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Abstract The proliferation of deepfake content presents a significant threat to digital integrity and necessitates
the development of efficient detection techniques. This study aims to establish a three-stage framework utilizing
advanced deep learning models for multimedia datasets encompassing audio, video, and image data. The initial
stage comprises an XceptionNet-based image deepfake detection model developed by providing its capacity to
capture subtle artifacts and inconsistencies through depth-wise separable convolutions. This model, developed
using the CelebA dataset, achieved an accuracy of 95.56 % for the image data. The second stage, focusing on
audio deepfakes, employs a novel approach combining Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) networks, selected for their capacity to process both the spatial and temporal aspects of
audio data. The hybrid CNN and LSTM achieved an accuracy of 98.5 % on the DEEP-VOICE dataset. The third
stage, addressing video-based deepfake detection, integrates the XceptionNet and LSTM networks, harnessing the
strengths of both spatial and temporal analyses. This integrated approach yields an accuracy of 97.574 % across
the Forensic++, DFDC, and Celeb-DF datasets. To address class imbalances in the datasets, class weighting is
employed, assigning greater weights to the minority class during training, thereby enhancing the robustness of the
model. This framework is used to develop an app for detecting deepfakes across images, audio, and video data.
This study underscores the significance of deep learning architectures and comprehensive datasets for accurate
deepfake detection across various media forms. By advancing detection methodologies, this research contributes to
combating misinformation and safeguarding the authenticity of digital content, thus supporting the preservation
of online ecosystems.
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1. Introduction

The utilization of manipulated images, videos, and audio files has increased significantly with the
advent of advanced artificial intelligence (AI) technologies, particularly deep neural networks (DNNs).
Although images and videos can be altered in earlier times [1], contemporary techniques facilitate the
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creation of highly realistic counterfeit human facial images [2], videos [3], and human voice mimicry
[4]. The application of DNN-based techniques for face replacement in deepfakes has expanded. Common
methods include autoencoders (AEs), Variational Autoencoders (VAEs) [5], and Generative Adversarial
Networks (GANS) [2]. These methods combine or superimpose a source face image onto a target image.
Recent advancements have enabled real-time voice cloning [4, 6], which is a network-based speech synthe-
sis technique that produces high-quality speech using target speakers [4]. Notable deepfakes created for
research include those of former US Presidents Barack Obama, Donald Trump, and George W. Bush
[7], with remarkably accurate lip-syncing. Deepfakes present complex technological, social and ethical
challenges. Their potential negative implications have been widely discussed in social media and state
news outlets [8]. Tariq et al. [9] demonstrated the significant impact of deepfake impersonation on facial
recognition technology. Given the increasing utilization of deepfakes to generate false information, from
fabricated news to deceptive content such as celebrity pornography, the rapid evolution of deepfakes has
prompted the academic community and technology industry to emphasize the automated detection of
deepfake videos. The proliferation of deepfake technology has raised significant ethical, security, and pri-
vacy concerns. Consequently, developing deepfake detection techniques has become imperative, given the
potential for misuse and harm. Numerous researchers have contributed to creating publicly available deep-
fake detection datasets [10-15]. Most of these datasets comprise authentic and manipulated false videos,
as well as edited images of individuals’ faces, specifically images substituted for those of another person.
Currently, deepfakes are generated using various techniques [2, 16, 17]. CelebA, a well-established large-
scale collection of facial attributes, contains approximately eight million attribute labels encompassing
facial images with diverse poses and complex background environments. The Deepfake Detection Cha-
llenge (DFDC) [16] incorporates the generated cloned audio, deepfake videos, or a combination of both.
The deepfake detection challenge [18] and FaceForensics++ (FF+4) [19] pioneered extensive datasets
that contain substantial quantities of deepfake videos. FF++ contains 5,000 videos, whereas DFDC com-
prises 128,154 videos, both produced using multiple deepfake generation techniques (FF++: 4, DFDC:
8). FF++ generates 5,000 deepfake videos by applying four deepfake generation models to a base set
of 1,000 authentic YouTube videos. Two additional deepfake datasets, Deepfake Detection (DFD) [22]
and FaceShifter [20], are incorporated into FF++. The deepfake detection challenge dataset was develo-
ped through collaborative efforts involving academic researchers, Amazon Web Services, Facebook and
Microsoft. Eight distinct synthesis techniques are employed to create deepfake videos using the DFDC
dataset recorded under various environmental conditions. Celeb-DF [12] was introduced in 2020, utili-
zing 500 authentic YouTube videos featuring 59 celebrities. A publicly accessible deepfake voice dataset
called DEEP-VOICE is available [21]. The AUDIO directory contains raw audio files categorized into
REAL and FAKE class directories. Each filename identifies the original speaker and altered voice. For
feature extraction, the authors used the "DATASET-balanced. csv”file. The characteristics are derived
from one-second audio segments, and the distribution of actual and fake samples was balanced using
random sampling. This study investigates deep learning approaches for the automatic classification and
identification of deepfake images, audios, and videos. The researchers trained deepfake detection models
for visual, audiovisual, and audio-based media using three distinct datasets. For image-based detection,
XceptionNet is trained on the CelebA dataset to detect altered facial images. For video-based content,
XceptionNet and long short-term memory networks are trained using the FaceForensics++, DFDC, and
Celeb-DF datasets. This methodology employs temporal modeling with frame-level feature extraction to
identify sequential and spatial artifacts. For audio-based detection, the CNN and LSTM networks are
trained on the DEEP-VOICE dataset, focusing on voice-cloning manipulations and synthetic speech. Each
model demonstrates robust detection capabilities across diverse multimedia forms. Evaluations indicate
high accuracy in distinguishing between authentic and fraudulent data.

2. Related Works

This section reviews the recent advancements in the manipulation of images, videos, and audio fi-
les using artificial intelligence methodologies. This study introduces a face-NeSt detection architecture
that optimally selects multiscale features for final prediction [22]. It employs an adaptively weighted
multiscale attentional (AW-MSA) module to ascertain the optimal proportion of multiscale features.
Face-NeSt accentuates significant feature regions across spatial and channel dimensions both locally and
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globally. In contrast to the prevalent contemporary computer vision models, Face-NeSt is lightweight.
It demonstrates superior performance on three publicly available benchmark datasets: FaceForensics+-+
(FF++), CelebDF, and DFDC, achieving AUC scores of 0.9823 on CelebDF, 0.9947 on DFDC, 0.9945 on
DeepFake (FF++), 0.9905 on Face2Face (FF++), 0.9978 on FaceShifter (FF++), 0.9948 on FaceSwap
(FF++), and 0.9548 on neuronal textures (FF+4+). A two-branch structural network, called the self-
attention default face discrimination network (SADFFD) [23], was developed. A branch with cascaded
multiself-attention mechanism (SAM) modules was integrated in parallel with EfficientNet-B4 (EffB4).
The multi-SAM branch provides additional features that focus on crucial image regions to distinguish
authentic and synthetic images. EffB4 was selected for its efficiency. Experiments on FaceForensics++,
Celeb-DF, and SAMGAN3 datasets showed SADFFD’s superior detection accuracy, achieving 99.01 %
in FaceForensics+++, 98.65 % in Celeb-DF, and 99.99 % in SAMGANS3. A unified network for the detec-
tion of FaceSwap (FS) and Face-Reenactment (FR) Deepfakes, termed AUFF-Net, was presented [24].
This approach uses spatial and temporal information from video samples to detect FS and FR. An
Inception-Swish-ResNet-v2 model was introduced as a feature extractor for spatial information, whereas
the Bi-LSTM measured temporal information. Three dense layers were added to create a discriminative
feature-vector group. Experiments on FaceForensic++ achieved average accuracies of 99.21 % and 98.32 %
for FS and FR, respectively.A lightweight machine learning based framework was developed to differen-
tiate between authentic and spoofed audio recordings [25]. This method uses handcrafted audio features,
including spectral, temporal, chroma, and frequency domain features. The ASVSpoof2019, FakeAVCe-
lebV2, and In-The-Wild databases achieved 89 % accuracy on ASVSpoof2019, 94.5 % on FakeAVCelebV2,
and 94.67 % accuracy, respectively. Explainability techniques elucidate the decision-making processes, en-
hance transparency, and identify crucial features for audio deepfake detection.

A hybrid-optimized deep-feature fusion-based deepfake detection (HODFF-DD) framework for videos
was introduced utilizing a spotted hyena optimizer [26]. HODFF-DD is robust across ethnicities and
lighting conditions, and detects deepfake videos produced using various techniques. It consists of two
main components: a custom model with InceptionResNetV1 and InceptionResNetV2 and bidirectional
long short-term memory (BiLSTM). Faces extracted from videos underwent frame-level feature extraction
using the custom model, and the resulting feature sequences were used to train a BiLSTM for the binary
classification of real and fake videos. The spotted hyena optimizer optimized the network weights during
training. Evaluations on datasets like Kaggle’s FaceForensics++ with techniques such as DeepFakes, Fa-
ceSwap, Face2Face, FaceShifter, and NeuralTextures, and FakeAVCeleb show the method’s effectiveness,
achieving over 90 % accuracy on subsets like DeepFakes, FaceSwap, and Face2Face. Using a graph neural
network (GNN), An enhanced method for detecting deepfakes in films has been developed [27]. This
technique splits detection into two stages: a four-block CNN stream and mini-batch graph convolution
network stream. Three fusion networks FuNet-A, FuNet-M, and FuNet-C were fused in two phases. After
30 epochs, the accuracy of the model for various datasets was 99.3 %.This study employed various color
spaces to enhance the detection of deepfakes [28]. They used two stages: a color-space-based forgery de-
tection network, and a representative forgery learning stage with multicolor space reasoning. The forgery
learning stage employed a forgery highlighting network, color-space transformations, and manipulation
cue-boosting network. The forgery highlighting network found high-level semantic forgery clues and tex-
tural anomalies, the cue boosting network enhanced feature representation, and the color spaces provided
benefits over RGB. They tested the technique on FaceForensics+4, DFDC, and CelebDF datasets and
found it effective in identifying falsified multimedia content in various color representations.

In this study, an adaptive blind watermarking technique was used to enhance the flexibility and resi-
lience of deepfake image detection [29]. This approach embeds coefficients to ensure good image quality
while fending off attacks by using mixed modulation and a sign-altered mean value. Additionally, blind
adaptive deepfake detection with a tamper detection mean value adaptively detects relative positions
in marginally altered or deepfaked images. The grey wolf optimizer and denoising autoencoder further
improve the performance of the method through parameter optimization and watermark detection. This
technology verifies the image owner and confirms face validity by adaptively embedding watermark infor-
mation while maintaining the original facial image. This research focused on current deepfake detection
models for plaintext faces [30]. However, sensitive data must be computed securely for practical appli-
cation. The Secure DeepFake Detection Network (SecDFDNet) is presented as a solution. An additive
secret-sharing technique for safe DeepFake face detection is presented. Furthermore, protocols for multi-
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party secure interactions, such as SecReLU, SecSigm, SecSpatial, and SecChannel, have been presented
and shown to be secure with little space and communication complexity. By combining these secure pro-
tocols with a trained plaintext DFDNet, the SecDFDNet model outperforms several other models and
achieves the same accuracy as the plaintext DFDNet.

A novel deepfake detection network can distinguish between high- and low-quality facial images ge-
nerated using various techniques [31]. This framework combines a regular spatial stream with a fre-
quency stream to address low quality images. Hierarchical supervision was employed to differentiate
between actual and fraudulent images. This study created an MSCR-ADD by integrating multispa-
ce channel-representation learning [32]. This system combines channel-specific, channel-differential, and
channel-invariant encoders for deepfake detection. Experimental results on four benchmark datasets show
that MSCR-ADD outperforms the current state-of-the-art methods. Feature representations in channel-
differential and channel-invariant spaces enable effective artifact identification in false audio by highligh-
ting the distinctions and similarities between the channels in binaural audio. In this study, AVFakeNet
incorporates auditory and visual modalities to enhance deepfake detection accuracy [33]. AVFakeNet is
a Dense Swin Transformer Net (DST-Net) with input, output, and feature extraction blocks. The featu-
re extraction block used a specially designed swine transformer module in which the input and output
bhads had dense layers. Comprehensive experiments on five datasets, including audio, visual, and audio-
visual deepfakes, along with a cross-corpora examination, demonstrated the efficacy and generalizability
of this unified architecture. The findings demonstrate that the proposed framework successfully identifies
deepfake videos by analyzing both audio and visual streams.

3. Materials and Methods

This section discusses the materials used in the development of deepfake detection models, including
images, audio, and videos. An XceptionNet-based image-deepfake detection model is developed using
the CelebA dataset obtained from the Kaggle repository. The CNN with LSTM-based audio deepfake
detection model is developed using the DEEP-VOICE dataset, while the XceptionNet with LSTM-based
deepfake video model is developed using FaceForensics++, DFDC, and Celeb-DF datasets obtained from
the Kaggle repository.

3.1. Dataset Description

Various deepfake datasets are used to test and identify manipulated media. They provide samples of
fake and real images, videos, and audio from various sources, such as YouTube and public websites. Table
1 provides an overview of the deepfake datasets used in this study. It contains details on the dataset
name, year of release, number of fake and real samples, source, and media type. This comprises datasets,
such as CelebA, FaceForensic++, DFDC, Celeb-DF, and DEEP-VOICE.

Cuadro 1: Deepfake datasets details

Dataset Release Year | Fake : Real Ratio | Source Type
CelebA 2021 11,509 : 8,000 Celebrity images | Image
FaceForensic++ 2019 4K : 1K YouTube Video
DFDC 2020 > 100K :> 100K Celebrity videos | Video
Celeb-DF 2019 5,639 : 590 YouTube Video
DEEP-VOICE 2020 1,000 : 2,500 Public Audio

a) CelebA: The CelebA dataset, obtained from Kaggle, comprises 11,509 real images and 8,000 fa-
ke images, rendering it a valuable resource for training and testing face-detection models [10]. It
is extensively utilized for facial attribute recognition, including features such as smiling, wearing
glasses, and hair coloration. The dataset encompasses 202,599 facial images of various celebrities,
featuring 10,177 unique individuals, five landmark points, and 40 binary attribute annotations.
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In addition, the CelebA dataset exhibits variations in pose, background clutter, and expressions,
presenting challenges for deep-learning-based facial analysis.

FaceForensic++:FaceForensics++ is an extensive dataset designed to facilitate the detection of
manipulated facial images and videos [19]. The collection contains high-quality real and fake video
footage developed using deep learning-based face manipulation techniques, including DeepFakes,
Face2Face, FaceSwap, and NeuralTextures. Furthermore, the dataset incorporates raw and com-
pressed videos, which may prove beneficial for assessing the robustness of models against varying
compression levels. Researchers have extensively employed FaceForensics++ to train deepfake mo-
dels and enhance real-time facial-content identification models.

DFDC: The DFDC dataset was introduced on Facebook in collaboration with industry experts
[18]. This dataset comprises over 100,000 real and synthetic videos, and deep learning models are
utilized to create highly realistic facial manipulations. Subjects within the dataset were captured
in diverse lighting and background settings, rendering it one of the most challenging datasets for
training deepfake detection models. The DFDC dataset plays a crucial role in the development of
robust Al solutions to identify manipulated media.

Celeb-DF':Celeb-DF is a deepfake video dataset designed to enhance the performance of deepfake
detection [13]. The dataset encompasses over 590 real videos and 5639 deepfake videos generated
using advanced synthesis techniques, resulting in highly realistic facial expressions, lip movements,
and eyeblinks. It addresses challenges in deepfake detection, such as the reduction of visual artifacts
commonly observed in synthetic videos. High-resolution video samples from Celeb-DF provide an
excellent benchmark for evaluating the efficacy of the detection algorithms.

DEEP-VOICE: The DEEP-VOICE Kaggle dataset incorporates both authentic human speech
and its corresponding deepfake audio tracks [21]. This dataset facilitates the training of models to
distinguish between authentic and synthetic voices, and comprises artificially altered speech exam-
ples based on Al approaches in voice synthesis. The resulting high-quality alterations in human
speech through AT provide speech samples via voice synthesis techniques to develop robust mecha-
nisms against a range of increasing cyber fraud risks associated with audio deepfakes, which may
be linked to misinformation campaigns or identity spoofing attempts.
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Figure 1 illustrates the chromogram of authentic audio, demonstrating the temporal variation in pitch
classes. In real audio recordings, this variation typically exhibits gradual progression and adheres to
natural harmonic structures, particularly in speech or musical compositions. Authentic audio generally
displays consistent harmonic relationships between the pitches over time. If artificially generated audio
fails to accurately replicate natural pitch patterns, it indicates manipulation or inadequate synthesis.
Subtle, unnatural alterations in pitch or abrupt variations serve as indicators of audio inauthenticity.
Figure 2 shows that mel-frequency cepstral coefficients (MFCCs) represent the human auditory system’s
perception of frequency content in audio, compressing it into features that emphasize perceptually sig-
nificant frequencies. In real audio, the MFCCs exhibit smooth characteristics and consistent transitions.
In the artificially generated audio shown in Figure 4, MFCCs do not follow natural frequency patterns,
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particularly if the generative model fails to produce realistic speech or other acoustic features. A compa-
rative analysis of authentic and artificially generated MFCCs can identify unnatural frequency variations
or anomalies in synthetic audio. Figure 3 presents a chromogram for synthetic audio, providing insight
into the pitch classes of the artificially generated audio clips. In numerous instances, deepfake audio exhi-
bits difficulty in maintaining the smooth harmonic structure characteristic of authentic audio, resulting
in erratic pitch shifts or unnatural-note transitions. Abrupt changes between pitch classes or irregular
tonal distributions suggest the synthetic nature of audio. Chroma refers to 12 distinct pitch classes in
Western music, irrespective of the octave. An octave refers to the interval between one musical pitch
and another pitch, which is either double or half its frequency. The chroma stft feature, derived from the
short-time Fourier transform (STFT) of an audio signal, represents the energy distribution among the 12
pitch classes over time. It is effective in music analysis for tasks, such as chord identification, harmonic
structure detection, and tonality differentiation. The time-frequency representation of the audio signal
aggregates the energy into bins corresponding to the 12 pitch classes, disregarding octave differences.
This provides a concise method for visualizing the temporal evolution of musical elements, making it
suitable for comparing the tonal structures of authentic and synthetic audio samples. Figure 5 illustrates
the chroma_stft feature over time, demonstrating the energy distribution across different pitch classes th-
roughout the audio signal duration. This visualization facilitates the identification of harmonic and tonal
structures in real audio. Figure 6 depicts the spectral centroid values over time, indicating variations in
the ”brightness.°f the audio signal. A higher centroid typically corresponds to a brighter sound, whereas
a lower centroid indicates darker tonal quality. Figure 7 displays the deepfake detection challenge picture
dataset from the Kaggle repository, whereas Figure 8 displays the distribution of video frames based
on the width intervals. The evaluation results for several face-detection software packages with different
image resolutions are presented in Table 2.
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Cuadro 2: Performance of different face detection packages under varying image resolutions.

Package FPS (1080 x 1920) FPS (720 x 1280) FPS (540 x 960)
Facenet-pytorch 12.97 20.32 25.50
Facenet-pytorch (non-batched) 9.75 14.81 19.68
dlib 3.80 8.39 14.53
mtcnn 3.04 5.70 8.23

4. Proposed Methodology

This research aims to address the challenges introduced by deepfake media in audio, video, and image
formats. To reduce the dissemination of misinformation and preserve digital integrity, this framework pro-
poses comprehensive detection and mitigation strategies utilizing advancements in artificial intelligence,
machine learning, and statistical learning. A multimodal framework for determining the authenticity of
media content, including audio, videos, and images, is shown in Figure 9. The initial phase involves data
collection, which encompasses the acquisition of raw data from three sources: audio, video, and images.
These serve as inputs for the subsequent stages. Each data type undergoes distinct processing during
the data preprocessing phase. To ensure consistency in size, scaling, and format, image data are first
subjected to face detection, which isolates the facial regions, followed by normalization. Mel Frequency
Cepstral Coefficients (MFCC) are extracted from audio data to capture relevant acoustic features. Video
data are processed by extracting frames, identifying faces within the frames, and executing audio-video
synchronization to ensure the alignment of the audio and visual streams. During the model training pha-
se, predictive models are constructed using preprocessed data. XceptionNet, a deep learning architecture,
is employed for feature extraction from the image data, with a softmax layer utilized for classification.
For audio data, feature extraction is followed by classification using a Recurrent Neural Network (RNN).
Video data analysis involves XceptionNet for frame-level feature extraction and Bi-LSTM for temporal
feature modeling. Dynamic Time Warping (DTW) is employed to assess audio-video synchronization
and ensure temporal coherence of the media. In addition, a softmax layer is utilized for video feature
classification. The trained model is subsequently employed to categorize input media as either authentic
or fraudulent, ensuring a comprehensive and reliable detection process across diverse data modalities.
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4.1. Image Deepfake Detection

Image deepfake detection focuses on identifying manipulations that are often created using generative
models, such as Generative Adversarial Networks. The challenge lies in detecting subtle manipulations
such as face swaps, altered expressions, or synthetic creations that are visually convincing. Techniques
include the analysis of inconsistencies in lighting, facial landmarks, and texture patterns. Deep learning
models are widely used to identify these anomalies and are trained on large datasets of real and fake
images to enhance their ability to distinguish between them. This study develops an XceptionNet-based
image deepfake detection model using the CelebA dataset.

4.1.1. XceptionNet Image Deepfake Detection Model

XceptionNet is a sophisticated convolutional neural network architecture developed by Google resear-
chers in 2016. XceptionNet is a modified version of the inception architecture that incorporates depth-wise
separable convolutions to enhance the performance and reduce the model’s parameter count. The Xcep-
tionNet architecture comprises three stages: entry, middle, and exit stages. With 71 layers, including
36 convolutional layers, 3 fully connected layers, and additional auxiliary layers for regularization and
training purposes, XceptionNet provides a robust framework for image classification tasks. The input
to the XceptionNet model is an image with dimensions of 299 x 299 x 3, where 299 represents the
width and height of the image, and 3 denotes the number of color channels (RGB). The input image
undergoes normalization and is subsequently processed through convolution layers for feature extrac-
tion. The architectural structure comprises three distinct stages: entry, middle, and exit, with the middle
stage incorporating a series of depth-wise, separable convolutions. The entry stage focuses on reducing
the spatial dimensions of the image while increasing the number of filters. This component comprises
several convolution layers, followed by max-pooling for downsampling. The convolutional layer output is
calculated using Equation (1).

70 — ¢ (Wm « X (=1 +b<z)) (1)
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Where Z(®) is the output of the I-th layer, W) represents the weights of the I-th convolutional filter,
X U=1) ig the output from the previous layer, b is the bias term, * denotes the convolution operation,
and f(-) is the non-linear activation function, usually ReLU. Max-pooling is applied to reduce the spatial
dimensions and is calculated using Equation (2).

Yij = max(Xiivk jij+r) (2)

Where k is the pooling size. The middle stage comprises a series of depth-wise separable convolutional
layers designed to capture deeper and more abstract features. Multiple stacked separable convolution
layers are present. Each layer consists of depthwise and pointwise convolutions. Depth-wise convolution
applies convolutions over each channel independently, and pointwise convolution combines the outcomes
of depthwise convolution. In the exit stage, the features undergo upsampling to restore the original
resolution, followed by global average pooling, and fully connected layers to perform classification. Global
average pooling reduces each feature map to a single value by averaging and is calculated using equation

3).

1 H W
Yo= o W;;XJ (3)

Where H and W denote the height and width of the feature map, respectively. The fully connected layer
applies a linear transformation to the pooled features and is calculated using Equation (4).

Z =W xE-1 4 L) (4)

Where W) and b(F) are the weights and bias of the final fully connected layer, and X1 is the
output from the previous layer. The final fully connected layer applies a softmax function to obtain class
probabilities using Equation (5).

eZx

Zf:l e

Where, Zj is the score for class k and K is the total number of classes. The model is trained using the
cross-entropy loss for classification and is calculated using (6).

Ply=k|X)= (5)

N K
L==Y"Y yirlog(P(y; = k| X;)) (6)

i=1 k=1

Where: N is the number of training samples, y; 1, is the true label for sample ¢ and class k, and P(y; =
k| X;) is the predicted probability for class k. This XceptionNet architecture possesses approximately
22 million trainable parameters, enabling it to capture and learn complex features from data.

4.2. Audio Deepfake Detection

Audio deepfake detection aims to identify artificially altered speech typically generated using advanced
text-to-speech models. These synthetic audio clips can replicate the voices, intonation, and accent of
individuals, making detection challenging. Detection methodologies analyze features, including acoustic
patterns, frequency inconsistencies, and unnatural speech pauses. Deep learning models focus on detecting
temporal inconsistencies and abnormal voice signal fluctuations to differentiate authentic audio from
deepfakes.

4.2.1. Hybrid CNN with LSTM Audio Deepfake Detection Model

A hybrid model combining a Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) networks is highly suitable for audio deepfake detection because of its capacity to process both
the spatial and temporal aspects of audio data. CNNs demonstrate high efficiency in extracting spatial
features from spectrograms or other forms of audio representation, capturing significant patterns within
both frequency and time domains. These features frequently reveal subtle anomalies such as unnatural
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frequencies, inconsistencies in pitch, or irregular energy distributions, which are typically introduced
during audio synthesis. LSTM networks are structured to address sequential data, rendering them well
suited for analyzing temporal dependencies within audio frames. By inputting CNN-derived high-level
features into the LSTM layers, the model can comprehend the temporal evolution of these spatial features,
enabling sensitivity to the detection of temporal anomalies, such as unnatural pauses, inconsistent voice
modulation, or disrupted speech rhythms. This effective collaboration is achieved through a combination
of feature extraction via a CNN and sequential analysis via LSTM, thereby providing a robust framework
that distinguishes real audio from fake audio.

Raw audio data are converted into a melspectrogram, which represents the frequency content of the
signal as a function of time. The mel-spectrogram represents the audio signal in terms of the time,
frequency, and amplitude. The Mel-spectrogram is calculated using Equation (7).

Smel(t, f) = mel(STFT (z(t))) (7)

Where, z(t) is the raw audio signal over time, STFT is the Short-Time Fourier Transform, Spe is
the mel-scaled spectrogram, ¢ is time, and f is frequency in the mel scale. Figure 11 and 13 show the
melspectrograms of real and fake audio signals over time. The mel-spectrogram image is given as the
input to the CNN. The CNN extracts spatial features from the mel-spectrogram, including edges and
frequency patterns. The convolution operation applies filters to detect these patterns using equation (8).

Conv(z) =x+w—+b (8)

Where, x is the input image mel-spectrogram, w is the filter (weights), b is the bias term and x is the
convolution operation. Max-pooling is used to down-sample the feature maps, thereby preserving the
most salient features while reducing dimensionality utilizing equation (9).

MaxPool(z) = méx(pool region(z)) (9)

The CNN output is flattened into a one-dimensional vector before being input into the LSTM. The LSTM
receives this flattened output as the input sequence, with each time step representing an audio frame.
CNN extracts high-level spatial features, whereas LSTM processes temporal dependencies by capturing
information across time frames. After the LSTM layer, a dense layer is used for the binary classification
of the real and fake audio. During the model training, the loss function is used as the binary cross-entropy
for classification using equation (10).

L(y,§) = —(ylog(9) + (1 — y) log(1 — 7)) (10)
Where y is the actual output (0 for real, 1 for fake), and § is the predicted output.
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Figure 10 illustrates the variation in amplitude of real audio. In real audio, amplitude fluctuations
typically exhibit smooth transitions, reflecting natural speech patterns, in which different sounds have
varying loudness levels. Conversely, Figure 13 shows that fake audio amplitude patterns appear irregular
or unnaturally consistent. Fake audio lacks the natural dynamic characteristics of real speech or exhibits
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artifacts such as abrupt volume changes, indicating its fake nature. Figure 11 shows the spectrogram for
authentic audio, displaying the energy distribution across frequencies over time. The real audio typically
exhibits smooth frequency transitions and distinct harmonic patterns, particularly in speech and music. In
contrast, Figure 12 shows that deepfake audio displays irregular frequency content in its spectrogram, such
as absent harmonics, unnatural frequency band shifts, and unexpected noise. These frequency content
deviations provide compelling evidence of the fake nature of audio. The hybrid approach is particularly
synergistic for addressing the complex nature of audio deepfakes, capturing both local patterns and
long-term dependencies to enhance the detection accuracy and reliability in real-world applications.

4.3. Video Deepfake Detection

Video deepfake detection involves identifying manipulated videos, in which faces and gestures are
synthetically generated or modified. These manipulations are often created through face swapping, which
makes it difficult to discern authenticity. Detection methods analyze inconsistencies in facial expressions,
blinking patterns, and lip-sync mismatches. Advanced deep learning approaches capture spatial and
temporal features, helping detect irregularities in visual information across video frames.

4.3.1. XceptionNet with LSTM Video Deepfake Detection Model

The hybrid model combining XceptionNet with LSTM networks presents a robust approach for vi-
deo deepfake detection, providing the strengths of both spatial and temporal analyses. XceptionNet, a
deep convolutional neural network, is proficient in extracting fine-grained spatial features from indivi-
dual video frames. Its depth-wise separable convolutions enable the capture of subtle visual artifacts,
including unnatural textures, facial irregularities, or blending errors that may be introduced by deepfake
algorithms. These spatial features provide critical information regarding frame-level inconsistencies. Con-
versely, LSTM networks are suitable for modeling temporal dependencies across sequential data. While
processing the spatial features extracted by XceptionNet, the LSTM layer learns the temporal patterns in
video frames, such as anomalies in facial movements, lip synchronization, or unnatural transitions. This
allows the hybrid model to detect both spatial inconsistencies in single frames and temporal anomalies
across sequences, thereby enhancing its robustness against advanced deepfake techniques. Each video is
divided into individual frames at a fixed rate of 30 fps. Each frame is input to XceptionNet for spatial
feature extraction using Equation (11).

F,, = Frame(t,), where ¢, = (11)

fps
n
where, F, is the n-th frame, ¢, is the time stamp of the n-th frame, fps is the frames per second. Each
frame is resized to the input size required by the XceptionNet. XceptionNet utilizes depth-wise separable
convolutions to reduce the computational complexity while preserving spatial information. This approach
enables the capture of fine-grained spatial features from each frame, such as facial irregularities or artifacts
introduced by deepfake generation. The depth-wise separable convolution is represented by Equation (12).

Conv(X) = Depthwise(X, W) + Pointwise(X, W) (12)
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Where, X is the input, W, and W), are the depthwise and pointwise filters, respectively. Each frame was
analyzed using the XceptionNet pretrained model on ImageNet to extract spatial features. These features
constitute a lower-dimensional representation of the frame and serve as an input to the LSTM. Following
the extraction of spatial features from all frames in a video, these features are sequentially arranged
and input into the LSTM layer. LSTM networks analyze the temporal dependencies in sequential data
and examine the evolution of spatial features extracted from video frames over time. LSTM detects in-
consistencies in facial movements, unnatural transitions, and synchronization errors across frames. The
model architecture involves processing each frame through XceptionNet to extract spatial features and
subsequently transmitting these features through LSTM to detect temporal dependencies. This hybrid
architecture is particularly well suited for addressing the challenges posed by deepfakes, which are cha-
racterized by subtle spatial artifacts and compromised temporal coherence. The integration of the Xcep-
tionNet and LSTM capabilities in this model facilitates improved detection accuracy and demonstrates
enhanced suitability for real-world video deepfake detection tasks, where both spatial and temporal cues
are of significant importance.

5. Results and Discussion

The use of advanced deep learning models, such as XceptionNet, and their integration with Long
Short-Term Memory networks have significantly improved deepfake detection capabilities. These models
employ state-of-the-art methods to identify audio deepfakes and detect manipulated media content in-
cluding video and image alterations with high accuracy. XceptionNet, a convolutional neural network, is
considered one of the most effective approaches for identifying image-based modifications, particularly in
deepfake images. It uses depth-wise separable convolutions, enhancing its ability to focus on fine-grained
features and subtle artifacts introduced during manipulation. By isolating pixel-level discrepancies, Xcep-
tionNet effectively detects altered content. It has shown reliability in image-based deepfake detection, with
accuracy rates often ranging between 95 % and 96 %. XceptionNet, trained on datasets like

CelebA, has exhibited remarkable performance in recognizing face-swapped images and detecting
manipulation inconsistencies. Its capacity to extract fine-grained information is crucial for combating
deepfake content. Combining XceptionNet and LSTM networks extends the deepfake detection capa-
bilities to video-based media. While XceptionNet performs spatial analysis by detecting frame-specific
pixel-level anomalies, LSTM networks capture sequential temporal changes across video frames. This
hybrid approach ensures a comprehensive examination of video alterations by detecting both temporal
and spatial artifacts. Datasets such as Celeb-DF and DeepFake Detection Challenge have shown that
this combined method yields accuracy rates exceeding 97 %. The integration of LSTM temporal mode-
ling with XceptionNet spatial precision provides a robust approach for identifying deepfakes in dynamic
video content. Convolutional Neural Networks (CNNs) and LSTM networks have demonstrated effective
synergy for audio deepfake detection. This architecture combines the spectral feature detection capabi-
lities of CNNs for audio data with the sequential pattern recognition abilities of LSTMs. This enables
the detection of temporal inconsistencies and audio artifacts, which are crucial for identifying deepfake
audio. CNN+LSTM architectures play a vital role in detecting manipulated audio content, such as voice
cloning and synthetic speech, with an accuracy rate of 98 %.

Figure 14 shows the time-domain waveform, with the x-axis showing the time in seconds and the y-axis
representing the audio signal amplitude. The waveform illustrates temporal variation in sound amplitude,
with higher peaks indicating increased intensity and lower troughs showing diminished acoustic energy.
This representation is used to analyze the temporal dynamics of the audio signals. Figure 15 shows a
mel-frequency cepstral coefficient (MFCC) visualization, with the x-axis showing time and the y-axis
depicting MFCC coefficients. Each value corresponds to the magnitude of a particular MFCC coefficient
at a specific time, as indicated by color intensity variations. This visualization captures the short-term
power spectrum of a sound signal, useful in speech and audio processing tasks for analyzing temporal
variations in frequency content. Figure 16 shows a spectrogram, with the x-axis denoting time and y-axis
showing frequency on a mel scale. The color intensity indicates the power magnitude of the signal at
each frequency and time point. This visualization captures the energy distribution across frequencies
over time and is valuable for analyzing audio signals in tasks, such as speech recognition, music analysis,
and environmental sound classification. Figure 17 shows the chroma feature visualization, with the x-axis
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showing time and y-axis depicting 12 distinct chroma values corresponding to 12 pitch classes in western
music. Each color indicates the intensity of a particular pitch class at a given time. This visualization is
useful in music processing for analyzing harmonic and melodic content, highlighting the prominence of
different notes or chords over time. Figure 18 shows the zero-crossing rate (ZCR), with the x-axis denoting
time and the y-axis showing the rate of zero crossings. ZCR indicates how often the audio signal changes
signs within a given timeframe. This feature is used in audio analysis to differentiate between sound
types, with higher ZCR values indicating more rapid signal fluctuations. Figure 19 shows the Spectral
Centroid over time, with the x-axis showing time and the y-axis depicting the spectral centroid in terms of
frequency. The spectral centroid indicates the genter of mass.°f the spectrum, and is often perceived as a
measure of sound brightness. Higher values correspond to brighter sounds and lower values correspond to
darker sounds. This feature is used to characterize the timbral quality of the sounds. Figure 20 shows the
Spectral Flatness over time, with the x-axis depicting time and the y-axis showing the spectral flatness
value. Spectral flatness quantifies how noise-like or tonal a sound is, with values near 1 indicating a flatter,
more noise-like spectrum and values near 0 indicating a more tonal signal. This feature helps distinguish

Zero Crossing Rate (ZCR) Spectral Centroid

Spectral Centroid

[ 10 20 30 40
Time (s)
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between harmonic and noise-like sounds, and is used in various audio signal processing tasks.
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102

Spectral Flatness

Figura 20: Spectral Flatness over time for the
tonal nature of audio signals

In conclusion, XceptionNet and its integration with LSTM networks represent state-of-the-art deepfake
detection methodologies for image and video media. The model’s ability to focus on minute temporal and
spatial anomalies ensures accurate detection of manipulated content. These capabilities extend to audio-
based deepfakes through CNN + LSTM architectures, offering a comprehensive approach to address the
challenges posed by deepfake media. As datasets and models evolve, these methodologies remain at the
forefront of the accurate and consistent mitigation of media manipulation.

Cuadro 3: Performance of Different Models on Deepfake Detection across Media Types

Model Accuracy (%) | Media Type | Dataset

XceptionNet 95.56 Image-based CelebA

XceptionNet + LSTM 97.00 Video-based FaceForensics++, DFDC, Celeb-DF
CNN + LSTM 98.00 Audio-based DEEP-VOICE

Table 3 presents the accuracies of various deepfake detection models for different media types. The
image-based XceptionNet model achieved an accuracy of 95.56 % on the CelebA dataset. In video-based
deepfake detection, the performance improved to 97 % through the utilization of a combination of Xcep-
tionNet and LSTM, tested on FaceForensics++, DFDC, and Celeb-DF datasets. CNN combined with
LSTM demonstrated the highest accuracy of 98 % in detecting deepfake audio using the DEEP-VOICE
dataset. These findings suggest that deep learning architectures are effective in identifying deepfake con-
tent; however, their accuracy varies depending on the media type and dataset employed. The accuracy
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of the model during training and validation is shown in figure 21. The accuracy values are shown on
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the y-axis, and the epochs are shown on the x-axis. As the model discovered patterns, the training ac-
curacy initially decreased and then quickly increased. However, the validation accuracy increased. Both
accuracies stabilize as epochs progress, suggesting that the model is convergent and has absorbed the
most significant patterns. The discrepancy between the higher training accuracy and lower validation
accuracy indicates a potential slight overfitting. This suggests that the model performs well on training
data, but not on unseen data. The model achieved stable performance, as indicated by the plateau at
high-accuracy levels. The model loss during training and validation across epochs is shown in figure 22.
The y-axis represents the loss values and the x-axis represents the epochs. As the model learns, the trai-
ning loss decreases from the initial high level. The validation loss also initially decreased before stabilizing
over a few epochs. The validation loss remains higher than the training loss at the end, indicating possible
overfitting and a generalization gap. A small difference between the two loss curves is acceptable, but
a significant difference suggests the need for more training data or regularization methods to improve
generalization.

The confusion matrix of the XceptionNet-based deep fake image detection model for fake and real
classes is shown in figure 23. Fake labels are shown in columns, and real labels in rows. The model correctly
identified 4882 fake instances (top-left value: 5115). False positives are indicated by the top-right values
(300). The bottom-left value (190) represents false negatives, where real cases are mislabeled as fakes. True
positives are bottom-right value (5300). This matrix shows high accuracy, with most of the predictions
being correct. The model has a moderate proportion of false positives and negatives, indicating room for
improvement. Overall, the model performed well, but could reduce misclassifications for a more balanced
performance. The capacity of the model to differentiate between classes at various thresholds is assessed
using the Receiver Operating Characteristic (ROC) curve, as shown in figure 24. The true positive rate
(TPR) and false positive rate (FPR) are displayed on the y- and x-axis, respectively. The curve illustrates
the effectiveness of the model in distinguishing between classes, as the decision threshold varies. A curve
hugging in the upper-left corner indicates a perfectly discriminative model. With an Area Under the
Curve (AUC) score of 0.9395, the model demonstrates significant discriminative power, indicating high
success in differentiating authentic and fraudulent cases. The performance of the model improves as the
AUC approaches 1. The dotted diagonal line denotes random guessing with an AUC of 0.5, whereas the
curve of the model is considerably higher, indicating high predictive power. The slight dips in the curve
suggest that the model requires further refinement. Overall, the ROC curve and AUC values showed that
the model could reliably categorize the occurrences.
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This effectively demonstrates the performance of advanced deep learning models, such as XceptionNet,
when used with LSTM networks for detecting deepfake content in any form of media. The extraction
of spatial and temporal features is the reason for their accuracy in recognizing fake images, videos, and
audio streams. The experimental results showed a very high accuracy for the developed models. Figure
25 and 26 show the confusion matrices for the deepfake video and audio detection models. The detection

accuracies of the video- and audio-based systems are97 %, and 98 %, respectively, using XceptionNet -+
LSTM and CNN + LSTM.

5.1. Application Overview

The developed application processes an input video by segmenting it into individual frames, which are
subsequently analyzed using a deepfake detection model to identify facial features. The detected faces are
then converted into a NumPy array suitable for input into a classification model capable of determining
the authenticity of the content. The model ultimately generates an output that indicates whether the
provided video contains manipulated content. This pipeline facilitates efficient deepfake detection through
the application of deep learning techniques for facial data extraction, as illustrated in Figure 27.
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Figura 27: Working of app for predicting video as deepfake or real
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The developed applications utilized the capabilities of the XceptionNet, XceptionNet with LSTM, and
CNN with LSTM models to demonstrate the efficacy of the proposed deepfake detection model in real-
world scenarios. These applications illustrate how the models can be applied to routine media verification
tasks by enabling individuals to identify modified photographs, videos, and audio in real time. Figures 28
and 29 depict how the application can determine whether an audio or video file is authentic or deepfake.
To assess the validity of the video, it considers temporal anomalies between frames and extracts spatial
features from individual frames. These applications provide a practical demonstration of how the propo-
sed models can be employed for real-world deepfake detection challenges. This study demonstrates the
effectiveness of deep learning models in detecting deepfake content across various media types, including
images, videos, and audio. The results indicate the precision of models such as XceptionNet, CNN, and
LSTM in distinguishing between authentic and manipulated content. The application’s capability to clas-
sify real and fake instances, such as audio deepfakes and Manoj Tiwari videos, is noteworthy. The findings
of this investigation reflect a growing necessity: the requirement for robust deepfake detection techniques
coupled with an increased need to combat digital misinformation, thereby ensuring the authenticity of
multimedia content in the era of Al-generated fabrications.

6. Conclusion

A novel three-stage deepfake detection framework is developed using advanced deep learning techni-
ques to address the challenge of detecting manipulated media across images, videos, and audio. Xception-
Net demonstrates promising performance for image-based media, achieving 95.56 % accuracy on the Celeb
dataset. In the field of audio deepfakes, a new method combining CNN and LSTM networks attains an
accuracy of 98.5% on the DEEP-VOICE dataset. The combination of XceptionNet and LSTM networks
proves effective for video-based deepfake detection, achieving an accuracy of 97.574 % on the Forensic++,
DFDC, and Celeb-DF datasets. This represents highly accurate detection of various classes of deepfakes,
indicating significant progress toward a comprehensive solution for deepfake detection. The implications
of these findings extend to practical applications in media verification platforms, social media companies,
and government organizations to combat misinformation. The implementation of these models in real-
time systems will enable stakeholders to substantially enhance their ability to track and contain deepfakes,
thereby ensuring the integrity of digital content in contemporary information ecosystems. However, the
performance varies when the model is exposed to novel or unseen manipulations, necessitating additio-
nal experimentation to enhance generalizability. Furthermore, these models face challenges in terms of
scalability and real-time applicability, particularly in resource-constrained environments.
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