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Abstract Understanding multiple modalities and relating them is an easy task for humans. But for machines,
this is a stimulating task. One such multi-modal reasoning task is Visual question answering which demands the
machine to produce an answer for the natural language query asked based on the given image. Although plenty
of work is done in this field, there is still a challenge of improving the answer prediction ability of the model and
breaching human accuracy. A novel model for answering image-based questions based on a transformer has
been proposed. The proposed model is a fully Transformer-based architecture that utilizes the power of a
transformer for extracting language features as well as for performing joint understanding of question and image
features. The proposed VQA model utilizes F-RCNN for image feature extraction. The retrieved language
features and object-level image features are fed to a decoder inspired by the Bi-Directional Encoder
Representation Transformer - BERT architecture that learns jointly the image characteristics directed by the
question characteristics and rich representations of the image features are obtained. Extensive experimentation
has been carried out to observe the effect of various hyperparameters on the performance of the model. The
experimental results demonstrate that the model’s ability to predict the answer increases with the increase in the
number of layers in the transformer’s encoder and decoder. The proposed model improves upon the previous
models and is highly scalable due to the introduction of the BERT. Our best model reports 72.31% accuracy on
the test-standard split of the VQAV2 dataset.

Keywords: Question-guided VQA, Visual question answering, Transformer-based VQA, BERT-based VQA.

1 Introduction

Humans can easily understand the image and perform reasoning over the image content. Given an image,
humans can easily perform complex tasks such as scene detection, object identification, Object counting, etc.
However, performing such reasoning over the image is challenging for a machine. Visual question answering is
nothing but developing an intelligent machine model that is capable of generating the correct answer for any query
posed for the given image. Since the query is about the image, both the question and the image need to be
processed in correlation. Such a problem, in the context of machine learning, is called multi-modal since it
involves processing two different modalities: image and language.
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Although there has been a lot of study on VQA problems, it remains difficult to increase the model's accuracy
and surpass human accuracy. Any VQA model typically consists of four phases. The extraction of picture
characteristics comes first, followed by the extraction of question features. The third step must do a joint
representation of these two elements because the inquiry relates to the image. In the final step, the prediction of
the answer is done. Early literature focused on extracting better image features by using various CNN models like
GoogleNet[1-3], VGGNet [4-6], ResNet [7-9] etc. or extracting better question features using various word
embedding techniques like word2Vec[10-11], Skip thought[8,12], LSTM [13-16] and used simple fusion methods
such as element-wise addition or element-wise multiplication [7],[10],[17]. Recent literature explores improving
the joint learning of image and question characteristics by using various attention models. Attention-based VQA
models attend only to the dominant parts of an image or a question thereby improving the performance. Also,
much recent literatures explored the transformer-based VQA models [18-20]. The transformers process the entire
sentence at once as opposed to conventional word embedding algorithms, which break down the sentence into its
parts and learn the context. The contribution of this research is listed here.

e An improved visual question-answering model based on a transformer (BERT) has been proposed.
e An extensive ablation study on the selection of hyperparameters of the model has been performed.
e The proposed model is a fully Transformer-based architecture that utilizes a transformer for question
feature extraction as well as for extraction of question—guided image features.
e The suggested model uses an encoder-decoder strategy of BERT for deeper co-attention learning
between question and image characteristics.
Due to the utilization of BERT, experimental findings show that the suggested model outperforms earlier SoTA
models and is extremely scalable. Our top single model reports 72.31% overall accuracy on the test-standard split
of the VQAV2 dataset. We execute thorough ablation to examine the effects of different hyperparameter settings
on the model's performance.

The rest of the sections are arranged as mentioned: The prior research in the area has been covered in Section
2, and the proposed TRANS-VQA framework and the working of its individual modules are explained in Section
3. The experimental design and findings are covered in Section 4 and finally, Section 5 summarizes and concludes
the research work.

2 Prior Work

Vision—language tasks have nowadays attracted many researchers due to their challenges in processing and
understanding multi-modal data. Visual question answering is such a type of vision—language task that demands
deep comprehension of vision and language together. The VQA model is expected to explore dense interaction
between the vision and language features efficiently to increase the answer prediction ability.

In [21] Yang et al. presented an attention-based method called stacked Attention Network. The authors proved
that performing reasoning multiple times on images gives better results. They introduced an attention model
where they ask the image a query multiple times to generate the answer. Lianli Gao et al. [22] suggested that the
question-guided image features are richer and provide better content with respect to question features. The model
extracts semantics from the question and important objects from an image (using an object detection algorithm).
The model selects only question-related object regions and finally optimizes the QLOB attention and the language
model by using a Softmax classifier to generate the correct response. In [23] authors presented a dense co-
attention network for fusing question and image features. Each word in a question attends to every region in an
image, and every region in an image attend to every word in a question, according to a fully bidirectional attention
mechanism that was presented. Further stacking was used to perform multi-step reasoning. Rahman et al. [24]
presented an improved attention mechanism called MCAO0AN that captures intra and inter-channel attention. Also,
they proposed two improved fusion techniques: multi-channel attention fusion and Multi-channel Mutan fusion. In
[25] Nguyen et al. extracted the predicates from both the question and the image. These predicate features along
with the image and question vectors are used for course-grained learning and the filtered features are used for
fine-grained learning. Filtering removes unnecessary information from image and question features. VILBERT
[26] extended the BERT to jointly represent the text and image. The architecture has two streams: vision and
language stream. In the visual stream, the image-guided language attention is performed and in the language
stream, the language-guided image attention is done. [27] proposed a self—adaptive transformer-based VQA model
that addresses the dynamic nature of question comprehension and dynamically discards the module that performs
badly by considering the intermediate results of each module during the reasoning. Yan Zhang [28] addressed the
object counting problem in VQA. Almost all the VQA models struggle with the Number questions in VQA. The
model discards the redundant counting by removing overlapping object proposals to increase counting accuracy.
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Authors of the MRA-NET model [29] explore two additional relational attention modules: Binary relation and
ternary relation. In [30] Guo W. et al. claimed that attending to the answer is equally important as attending to the
question and image to predict the correct answer. The answer information was used to correct the generated
visual attention map. [31] F. Liu, J, proved that not only the question-guided image attention is important but also
dense interaction between the words of the question is required to increase model performance. The model
performs two layers of self-attention on the question and this attended question is then used for guiding image
attention.

3 Methodology

The VQA task can be formally defined as follows. Let ‘I’ be the Image, ‘S’ be the corresponding question
sentence, and the answer ‘a’ is to be predicted.

a = arg max P(ans|(1,S); &) )
anseA
In eq (1), ‘P’ is the probability of an answer ‘ans’ from the answer set A, given a pair of images ‘I’ and question

‘S’. Here, A is an answer set and @ denotes the learnable parameters. We would like to maximize this probability.
This section discusses the proposed model and each component. Figure 2 demonstrates the detailed design of the
TRANS-VQA model. We used the VQAV2 dataset for training and testing our model.

3.1 The Dataset

VQA2.0 dataset [17] is created through human labelling and uses images from the COCO image caption
dataset. The VQA dataset contains three splits - training set, validation set as well as test set. Each set contains the
image, related questions, and the answers. Overall 204K images were taken from the COCO dataset.
Corresponding to each image there are 3 questions. In turn, there are 10 human-labelled answers associated with
each question. Thus, there are approximately 614K free-form questions and 1 billion answers. This is the largest
dataset available to date for solving the VQA problem.

3.2 Pre-processing

Before we feed information into the model, a great deal of pre-processing work is needed. During the training
phase, the pre-processed questions, images, and answers are fed into the model. The questions, the answers, and

the images were pre-processed and stored in advance for faster training.

3.2.1 Question Pre-processing

Questions are extracted and stored in a list from the JSON files provided by the VQA dataset. Since the model is
fully based on the transformer, the questions are tokenized in the same form that BERT used during pre-training.
BERT requires special tokens to be added before ([CLS]) and after ([SEP]) every sentence that informs the model
about the beginning and end of the sentence. Then using the WordPiece tokenizer, words are split into either full
forms or into word pieces. For example, running gets split into [‘run’, ‘##ing’]. Questions are made to a maximum
of length 14 by using padding. If the question length is smaller than 14 then Pad tokens are added and if the length
is greater than 14 then the question is truncated without losing any information. Attention masks are also
generated to help the model differentiate between the pad tokens [PAD] so, the model does not attend to those
padded features.

3.2.2 Answer pre-processing

Two different methods were used to extract the best answer. In the first method, we select the modal answer as
the answer that occurred the most among the 10 labeled answers to be the official answer. In the second method,
we reply to the multiple-choice answer which is machine-generated to get more consistent results. For soft label
scores, the scores are generated based on the answer’s frequency in the set of 10 answers per question. The score
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is set according to the evaluation metric used in [17], so the model learns better and the accuracy is more aligned
with the performance metric used. In all the above methods the answers are pre-processed in a similar way to the
questions.

3.2.3 Image pre-processing

We used bottom-up features [32] for image feature extraction. The output feature of 2048 is generated for each
image region using F-RCNN. The output from the above model is taken and the non-max suppression using loU
(Intersection of union) is applied to each object class. Only those object regions are selected for which confidence
exceeds a given threshold. Figure 1 shows the output generated by F-RCNN.

Figure 1: Faster-RCNN output

3.3 The Model Architecture

Transformers have recently become one of the most popular methods in NLP for working on unimodal tasks.
However, they have also been used extensively in multi-modal tasks like VQA and image captioning. Many
papers [23], [25], [26] propose using the encoder architecture of BERT for the entire VQA model. Inspired by the
BERT’s success in learning the language model, the proposed model has been implemented fully using
transformer - BERT. The model uses the encoder-decoder strategy of the transformer introduced in [33]. The
proposed TRANS-VQA model has two important components: encoder and decoder. The BERT has been used as
an encoder to extricate the question features, as the BERT has already been trained for extracting language
features. Additionally, the decoder's design is predicated on the BERT architecture, which collaborates to handle
the image and question characteristics. The decoder attempts to extract rich image features that are directed by the
question features after accepting the question features (extracted by the BERT-based encoder) and the image
features (extracted by F-RCNN). Essentially, the question is fed into the BERT-based decoder, which then
handles the question-guided image features. Figure 2 is an illustration of the suggested TRANS-VQA model's
framework.
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Figure 2: The TRANS-VQA model and its components

The architecture contains five modules: Question feature extraction, Image feature extraction, Joint feature
representation, Multi-modal fusion, and finally, answer prediction Module.
Question feature extraction:

As discussed in section 3.2.1 the questions are extracted using BERT initialised with pre-trained weights.

Image feature extraction:

We make use of Bottom-Up (F-RCNN) features as discussed in section 3.2.2 with adaptive K where K is the
number of regions extracted from the image. Due to the variable number of image features, we apply padding to
each image so that the number of features is 100 and the corresponding mask is also used by the model to prevent
attending to the padded regions.

Joint Feature Attention Module:

The joint feature attention has been performed by the decoder. The decoder contains many attention layers
cascaded in depth. The decoder is designed based on the scaled dot product using transformers. The queries and
the values with dimension dicy and dya respectively are fed as an input to the decoder. Where dya = dkey =d set to

the same dimension. For the VQA problem, the image features I € R™% are considered to be the queries, where
d; is the feature dimension, and m € [10,100] denotes the number of objects (for adaptive K). The keys and

values are the question features S € R™%%s where d is the embedding size and n € [1,14] is the sequence
length. To obtain the attention weights on the values first, the dot product of the query q with all the keys K is

computed. Then each term is divided by Vd and finally apply a softmax function. This is given by:

T
f=A(g, K,V)=softmax(qf( ) Vv
Vd )

This is done on each head in multi-head attention, given by:
f = MultiHeadAtten(q,K,V) = (head, ,head,, ... ....., head, )W?° 3)

head; = Attention(qW,? KWK ,vw} ) )
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. . . . . hXd
Where M«EQ ,WE, WY € R4k are the projection matrices for the j™ head, and W, € R"*@"". For each head,

the dimension dy, is given by dy=d/h where h denotes the number of heads. The Self-Attention (SA) unit shown in
Figure 3 takes only one input S. Here, the job of the multi-head attention layer is to learn the pairwise interaction

between the paired sample <Si,Sj> within S and generate the attended features z € R™*? by weighted summation
of all instances in S. The output feature generated by the multi-head attention layer is given to the feed-forward
layer which and further transforms them through two 2-layer MLPs with GELU [34] activation in between given
by:

FFN(I) = GELU(I W, + b)W; + b, )

The input and out dimensions are the same as d while the inner layer has dimensionality, d;; = 4 = d . Moreover,
to facilitate optimization, residual connection [35] followed by layer normalization [36] is applied to the outputs
of the two layers. The Co- Attention unit (CA) shown in Figure 3, takes two input features: I (Image features) and
S (Question features) where question feature S directs the attention learning for image features I. The CA models
the pairwise interaction between each paired sample <Si,/i> from S and I, respectively. As shown in Figure 4, the
decoder contains an SA unit followed by a CA unit.
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Figure 3: SA (Self-Attention) and CA (Co-attention) units
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The decoder performs attention learning by passing the input features S (question) and I (image) through the
decoder consisting of L number of attention layers cascaded in depth. We denote the input features as IV and S
respectively, where S is the question features from the last layer of the encoder, which are further fed to the next
layer of the decoder.

Multi-Modal fusion:

After co-attending to the question and image feature vectors, the two feature vectors need to be combined (or
fused) together such that the output can be used to predict an answer. Most implementations go for simple
element-wise multiplication, addition, or concatenation of the features to fuse them. We used the attention
reduction model discussed below to combine the two features.

Attention reduction model:

The encoded question features and the decoded co-attended image features are flattened using the attention
reduction model. After this stage, the output image,

I(L) = {I,(L), I,(L), ... ... ., 1, (L)} € R™* and question features S(L) = {S,(L), S, (L), ........, S, (L)} € R"*¥d
contain contextual information about the attention weights over the image regions and question words. The

attention reduction module contains a two-layer MLP for I(L) and S(L) to obtain their rich attended feature § and

I. Given I(L) as an input, the attended feature § is obtained as follows:

a = Softmax(MLP(I%)) (6)
i= MLP(a; 1;V)
EZ ( ) (7

Where & = [a;, a5 ,a5 ..., &, ] € R™ are the learned attention weights. The linear multi-modal fusion function
is applied to the § and [ as follows:
z = Layernorm(W;'T + WIS 8)

RdXd

Where d, is the common dimensionality for the combined feature and W; , W, € = are two linear projection

matrices. The use of LayerNorm here is to stabilize training.

Answer prediction Module:

The answer prediction module is a simple classifier. Once we combine the attended question feature vectors
and image feature vectors, the result of the Fusion module is given as an input to a multi-layer perception (MLP)
followed by a softmax function which then generates a vector of probabilities for probable answers from the entire
answer set. Here, the VQA is treated as a multiple-label classification task. The model tries to predict the
likelihood of one or more answers being applicable to a given question. Each question in a training set in VQA
v2.0 is associated with more than one answer and is assigned a soft score in [0,1]. We create the output vocabulary
containing all the answers appearing a minimum 8 times in the training set, giving 3129 candidate answers. The
multi-label classifier uses sigmoid activation in the last layer to normalize the final scores between 0 to 1 which is
followed by a binary cross-entropy loss, although we use soft target scores. The final step is a logistic regression
that predicts the correctness of each candidate answer. The Loss function L is given as:

Where the variables i and j denote the indices for M number of training questions and N number of candidate
answers respectively. The ground-truth scores S are the aforementioned soft accuracies of ground-truth answers,
generated as per the evaluation metric used by VQA.
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4. Results

4.1 Experimental setup

The model was developed using TensorFlow and Keras. The final model was run on a machine learning server
with 32GB NVIDIA GPU and 16-core CPU for training. The model was validated on the validation set after every
epoch using the evaluation metric specified. Note that, when the model was evaluated on validation set, we used
only the training split for training the model. Whereas, for evaluating the results on the test-dev and test-standard
splits, we used the train split, the validation splits along with the subset of VQA samples from Visual Genome
[37] for training.

Various ablation studies were performed on the proposed model by changing various hyperparameters and
finally, we concluded the best hyperparameters to be used. All models were trained for 13 epochs. For optimizing
hyperparameters the Adam optimizer with a learning rate of 1e-4 and 3,=0.9 and [,=0.98 was used. The learning

rate was set to min{2.5te™%,1e %), where ¢ is the current epoch number starting from one. After 10 epochs, the
learning rate is decayed by 1/5 every 2 epochs. Our best model has 24 layers, hidden size 1024 trained with batch
size 128.

4.2 Evaluation Metric
The authors of the VQA dataset specified an evaluation metric considering the variability in phrasing the
answers by different humans. The accuracy for a given answer was specified as:

#humans that said ans }

Acclans) = min{ 3

(10)

They took a subset of 9 answers from the 10 total answers and after calculating the accuracy using the formula
given in eq (10), these accuracies are then averaged to give the actual accuracy for a given answer. Before
evaluation, all the answers are pre-processed. All the characters are converted to lowercase, all periods except
decimal points are removed, number words are converted to digits, all articles are removed and all punctuations
are replaced with spaces. Apostrophes and colons are not removed since removing apostrophes may change the
meaning of a word and colons often refer to time. These processing steps are done for actual answers also.

4.3. Results and discussion

All the proposed models were trained on the VQAv2 dataset and tested on the validation set of VQAvV2 dataset
discussed in section 3.1. The results of open-ended answers for the Validation set of VQA v2.0 have been
compared with previous models in Table 1.

Table 1: Accuracies (in %) on validation set of VQAv?2 dataset

Model Yes-No Num Other All
HieCoAtt [13] 71.80 36.53 46.25 54.57
Top-Down Attention [32] 80.3 42.87 55.81 63.2
Counter [28] - 49.36 - 65.42
BAN [38] - - - 65.81
DFAF [39] - - - 66.66
MRA-NET [29] - - - 66.08
TRANS-VQA (BERT-BASE) 84.87 48.31 58.66 67.15
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TRANS-VQA (BERT-LARGE) 85.01 48.88 60.79 68.21

As shown in Table 1 our final model reaches a validation accuracy of around 68.21% which shows improvement
over all previous models on VQA. A comparison of the proposed model with previous models evaluated on the
VQA test-dev and test-std set is given in Table 2. Note that, the proposed TRANS-VQA model is trained on the
Train set + Validation set + Visual Genome dataset and evaluated on the VQA test-dev and test-std set.

Table 2 shows that the proposed model outperforms all previous models on the VQA v2 test-dev and test-std set.
We can infer that BERT as a language model’s ability to understand meaning allows it to gain an advantage over
traditional Glove-based methods easily and gives better performance than most models in answering Yes/No
questions. However, it fails to offer better performance in Number questions, which most models struggle against.
BAN+Glove+Counter performs better at counting tasks which was the main focus of the counter [28] paper. By
integrating counter into the proposed model, number counting prediction can be further improved. We managed to
get an increase of around 2% on the test-std dataset against similar SOTAs, which suggests our model reaches the
same understanding as a human. Model ensembeling and retraining can further improve our current performance.
The comparison of the proposed model with previous state-of-the-art models on test-dev and test-std accuracies on
the VQAV2 dataset has been shown in Figure 5.

Table 2: accuracy of the final suggested model on the test-standard and test-dev datasets for VQA v2.0. The
Visual Genome dataset is used to train the models, together with training and validation splits.

Method Test-development Test-standard
Yes/No | Number Other All All
Top Down attention [32] 81.82 44.21 56.05 65.32 65.67
Counter [28] 83.14 51.62 58.97 68.09 68.41
MRA-NET [29] 85.58 48.92 59.46 69.02 69.46
DFAF [39] 86.09 53.32 60.49 70.22 70.34
BAN & Glove & Counter [28] 85.42 54.04 60.52 70.04 70.35
MLVQA [41] 86.64 51.90 60.53 70.30 70.57
Re-Attention for VQA [30] 87.00 53.06 60.19 70.43 70.72
Den IIII [31] 86.30 50.9 61.5 70.50 70.8
DFAF+ BERT [39] 86.73 52.92 61.04 70.59 70.81
MCAN [ 40] 86.82 53.26 60.72 70.63 70.90
VILBERT [26 ] - - - 70.55 70.92
TRANS-VQA (BERT-BASE) 86.96 52.87 60.53 70.59 71.05
TRANS-VOQA (BERT-LARGE) 87.04 52.92 61.05 71.23 72.31
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Figure 5: Graph of the accuracy of the proposed model and previous models

Image ID: 262162
Q: Which room is this?

A: bedroom
Ground truth : bedroom

Image ID: 153994
Q:What does the white writing on
the umbrella say?

A: umbrella
Ground truth : lovenox

Image ID: 393277
Q: What is in front of the tower?

A: car
Ground truth : car

Image ID: 22935
Q: What is floating?

A: soccer ball
Ground truth : Soccer ball

Image ID: 262229

Q: How many girls are playing?
A:4

Ground truth : 4

Image ID: 25668
Q: Are this people real?

A:yes
Ground truth : yes
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Image ID: 416159 Image ID: 23017
Q: Are they all carrying a piece of
luggage? A2
A:yes Ground truth : p

Ground truth : yes

Q: "What setting is the blender on?"

Image ID: 416159

Q: How many of the 4 people walking
away are wearing backpacks?

A:4

Ground truth : 4

Figure 6. Model-generated answers and ground truth on validation images of VQA dataset

A selection of sample photos from the validation set along with our best model's projected responses
for each question are displayed in Figure 6. It is evident that the model correctly predicts the answer the
majority of the time. The algorithm occasionally fails to anticipate the right response, for example, when
the image is unclear or when the answer is obscured by non-human-readable language in the image.
Also, the questions whose answers are not directly present in the image and require outside knowledge

have not been projected properly.

Figure 7 shows question attention as well as visual attention maps obtained for a few of the sample
images by the TRANS-VQA model and gives insight into how visual attention is drawn to the important

parts of an image.

Why does the bicycle hang on
the front of a bus?

Why does the bicycle hang on the
front of a bus?
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Are these animals in the wild
or civilized environment?

animals in wild
civilized environment?

How many deer are there?

How many deer are there?

What color is the frog?

color frog?

Figure 7. Question attention and corresponding Visual attention maps obtained for a few example (image,
question) pairs of the VQA dataset. Green highlighted text shows important and attended question words.

Original Image

Layer 6 attention

Layer 8 attention

Layer 12 attention

What is there in a man’s
hand?
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Why is the bicycle on the
front of a bus?

How many sheep are
there?

Figure 8: Visual attention maps at layers 6,8 and 12 of BERT-based decode for a given Image, question pair

To examine the impact of adding layers to the encoder-decoder of the suggested TRANS-VQA model on visual
attention, we have analyzed the visual attention map at different layers of the decoder i.e. after layers 6, 8, and 12
shown in Figure 8. It has been observed that at each increasing layer, visual attention improves. This immediately
confirms our conclusion that the accuracy of the model grows with the number of layers in the encoder and
decoder.

4.4 Ablation Study

We undertake a series of ablations to test the impact of different hyperparameters on the performance of
the suggested model. A single or two alterations to the reference model are taken into account in each of the
ablation experiments displayed in Table 3. The outcomes confirm the patterns found with the individual ablations.

Increasing the number of layers in the transformer increases the accuracy of the model. Also, using the
adaptive K image features provides better results than the fixed image features. We can see that increasing the
BERT size also improves performance, though the compact models do offer competitive performance. Using
BERT with pre-trained features is also essential in improving the model’s learning capacity. Interestingly,
performance seems to drop when decreasing or increasing the batch size suggesting that matching the batch size
with the per attention-head key dimension in the transformer architecture is what contributes to a higher score.
Increasing the question length also does not seem to improve performance but rather hurts it. We experimented
with different activation functions but because BERT was trained with the GELU activation function, it offers
better performance during fine-tuning. These experiments reveal our best model to have the following
configuration: 24 layers, approximate GELU activations, 14 question length input, bottom-up attention features
with adaptive K, pre-trained BERT-Large model for encoder, and batch size of 128.

Table 3: A single network's ablations are assessed using data from the VQA v2 validation set. We assess different
iterations of our top "reference" model (shown in the first row). For single alterations, we train each version using
a constant random seed.

Reference model VQA v2.0 validation set
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Yes - No Num Other All
84.17 48.66 58.35 66.78
Number of encoder/decoder layers (ref: 8 layers)
2 layers 83.02 45.96 57.51 65.58
4 layers 83.64 46.65 58.06 66.18
6 layers 83.8 47.69 58.39 66.54

Hidden activation (ref: using approximate GELU activation function)

Using GELU activation function 84.16 48.48 58.34 66.75
Using ReLLU activation function 83.86 47.83 58.36 66.56
Using SiLU activation function 83.47 48.46 57.89 66.26

Question length (ref: 14 words per question)

28 words per question 84.12 48.24 58.4 66.73

Image features (ref: bottom-up attention features, adaptive K)

Bottom-up attention features, K=36 83.74 47.38 57.93 66.25

BERT models (ref. using BERT-Medium)

Using BERT-Small 83.64 46.65 58.06 66.18
Using BERT-Base 84.87 48.31 58.66 67.15
Using BERT — Large 85.01 48.42 58.67 68.21

BERT pretraining (ref. pretrained weights)

Randomly initialized weights 83.42 48.01 57.98 66.23

Mini-batch size (ref: 64 training questions)

32 training questions 83.71 48.13 57.42 66.08

128 training questions 83.79 47.16 58.25 66.39

Table 4: Effect of Number of Layers in encoder/decoder on VQAv2 Validation set.

No. of layers in Yes/No Number | Others All
Encoder/Decoder
L=2 83.02 45.96 57.51 65.58
L=4 83.64 46.65 58.06 66.18
L=6 83.8 47.69 58.39 66.54
L=8 84.17 48.66 58.35 66.78
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L=12

84.23

48.69

58.34

67.15

L=24

85.01

48.88

60.79

68.21

Table 5: Effect of various activation functions on VQA-v2 Validation

Activation Yes/No Num Others All
Function
GELU 84.16 48.48 58.34 66.78
RELU 83.86 47.83 58.36 66.56
SILU 83.47 48.46 57.89 66.26

Table 6: Ablation studies of various BERT models on VQA-v2 Validation

BERT Models Layer, Yes/No Num Others All
Hidden nodes
BERT Small L=4,H=512 83.64 46.65 58.06 66.18
BERT Medium L=8, H=512 84.17 48.66 58.35 66.78
BERT Base L=12, H=768 84.87 48.31 58.66 67.15
BERT Large L=24, H=1024 85.01 48.42 58.67 68.21

Table 3, Table 4, and Table 5 show the effect of varying numbers of layers in the encode/decoder, Activation
functions, and BERT models respectively on the model performance. We derive the conclusion that the model
accuracy grows with the number of layers in the encoder/decoder. Also, GELU activation outperforms the other
two activations. Although BERT large gives the best accuracy, training the BERT large model requires more GPU

and memory usage. The same results have been shown graphically in Figure 9.
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Analysis of effect of various BERT Models
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Figure 9: Analysis of the effect of various hyperparameters on model accuracy

5. Conclusion and future work

We proposed a novel fully transformer-based visual question-answering model using question-guided visual
attention. The implemented model is based on the encoder-decoder strategy used in transformers. Extensive
ablation was performed on the reference model by changing various hyperparameters to observe the effect of each
hyperparameter on the reference model. After performing ablation, we came up with our best model configuration
as 24 layers in encoder and decoder, approximate GELU activations, 14 question length input, bottom-up attention
features with adaptive K, pre-trained BERT-Large model for encoder, and batch size of 128. The BERT-based
model reaches 72.31% accuracy and outperforms all SoTA. Based on our experiments, we conclude that
Transformer architectures have a large scope in solving the Visual Question Answering task. Further
understanding of how the decoder architecture helps image co-attention will allow us to improve it. Future work
may include combining local and global image features to improve the extraction of valuable features. Also,
integrating outside knowledge into the model will help the model to answer open-domain questions that cannot be
answered by the proposed model.
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