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Abstract: The evolution of image manipulation techniques has presented a paradoxical scenario in contemporary 
visual culture. This phenomenon operates as a double-edged sword, offering both creative liberation and ethical 
dilemmas. Consequently, there is a need to develop automated mechanisms capable of discerning such forged 
data. The proposed methodology leverages transfer learning, utilising pre-trained deep learning models as a 
foundation and fine-tuning them specifically for the task of copy-move forgery detection. This approach uses the 
knowledge learned from large datasets, enhancing the network's ability to discern subtle patterns indicative of 
copy-move manipulations in images. Further, this research introduces a custom-designed CNN architecture 
tailored to the intricacies of copy-move forgery, optimising feature extraction and classification. Experimental 
evaluations conducted on diverse datasets, namely MICC-F220, MICC-F600, MICC-F2000, and CoMoFoD 
demonstrate the effectiveness of the proposed method with a True Positive Rate (TPR) of 100%. 
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1 Introduction 
The rapid rise of social networking services in the digital age has led to an unprecedented surge in the creation 
and dissemination of media content, spanning across audio, images, and videos. The widespread availability of 
software tools on the internet has facilitated the manipulation and alteration of this media content, rendering 
what was once a complex task into a commonplace activity. Forgery is the act of fraudulently creating or 
materially altering a legal document with the intent to defraud. There are numerous types of image forgeries, 
including copy-move, splicing, morphing, and retouching. Copy-move image forgery occurs when a portion of 
an image is duplicated or cloned and then pasted in a different location within the same image. The creation of a 
forged image by splicing together two or more distinct images is another form of forgery. In this forgery, one 
object from one image is replaced with another object from another image. Copy-move forged documents are 
among those that are difficult to identify due to the similarities between duplicated and forged data. 
 
The generation of fake faces images using Generative Adversarial Networks (GANs) stands out as a particularly 
alarming phenomenon. This technology allows the alteration of a face in an original image with one observed in 
another image or video, giving rise to deep fake images and videos. This issue has escalated rapidly on social 
networks, posing a significant threat. The proliferation of deep fake content, facilitated by tools like 
FotoForensics, JPEGsnoop, Ghiro, Forensically, Amped Authenticate, izitru, and others, has made image 
manipulation accessible even to individuals without technical expertise. In Figure 1, an example of a copy-move 
forgery image is presented. Figure 1a displays the original image, while Figure 1b exhibits the forged version.  
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Figure 1: Example of Copy-Move Forgery image (a) Original Image (b) Forged Image [1] 

Copy-move forgery detection techniques have evolved over the years, employing various approaches to identify 
manipulated images. The standard method involves the use of local feature extractors like SIFT (Scale-Invariant 
Feature Transform), SURF (Speeded Up Robust Features), and ORB (Oriented FAST and rotated BRIEF). These 
techniques extract features from specific regions of the image, allowing for the detection of duplicated or altered 
elements. Additionally, orthogonal moment-based feature extraction has been utilized in conjunction with these 
methods. One of the primary distinctions in detection methods lies between block-based algorithms and feature 
keypoint-based algorithms. In the former, the image is divided into small blocks, and features are extracted from 
each block. In the latter, keypoints throughout the entire image are located, and their attributes are extracted. Both 
methods facilitate the construction of matched block pairs, enabling the identification of manipulated regions 
within the image. There are two fundamental approaches to detecting image manipulation: active and inert. Active 
methods involve replicating specified data, such as a digital watermark, into the image during or after the 
collection process. This integrated data is utilized to detect manipulation actively. In contrast, passive approaches, 
also known as "blind approaches," identify forgeries without the need for additional information.  
 
CNNs (Convolutional Neural Networks) have emerged as highly effective tools for detecting copy-move image 
forgeries due to their ability to automatically learn and extract intricate information from images. Unlike 
traditional block-based and keypoint-based methods, CNNs do not rely on hand-crafted features that may be 
susceptible to changes in image quality, scale, or rotation. Instead, CNNs can autonomously learn pertinent image 
features across various levels of abstraction, ranging from basic edges to complex shapes and textures. This 
adaptability allows CNNs to excel at identifying intricate forms of image manipulation, making them a powerful 
and versatile tool in the field of digital forensics.  
 

The highlights of this paper can be summarized as follows: 
• The paper uses transfer learning, capitalizing on pre-trained deep learning models such as Alexnet, 

VGG16 and MobilenetV2, and fine-tuning them specifically for copy-move forgery detection.  
• Introducing a specialized CNN architecture tailored to the unique challenges posed by copy-move 

forgery, the paper optimizes the processes of feature extraction and classification. This custom-
designed architecture enhances the accuracy and efficiency of detecting manipulated content in images. 

• The proposed methodology undergoes rigorous evaluation on diverse datasets, including MICC-F220, 
MICC-F600, MICC-F2000, and CoMoFoD. Through these experiments, the efficacy of the approach is 
demonstrated, showcasing its ability to effectively detect copy-move forgeries across varied contexts 
and datasets. 

 
The paper is organized as follows: Section 1 provides an introduction, contextualizing the significance of 
automated copy-move forgery detection in contemporary visual culture. Section 2 reviews related works in the 
field of image manipulation detection. Section 3 delves into the methodology, detailing the transfer learning 
framework and the design principles behind the custom CNN architecture. Section 4 presents the experimental 
descriptions and evaluation discussion. Finally, Section 5 concludes the paper, summarizing the contributions, 
discussing implications in the domain of automated image manipulation detection. 
 
 
 

2 Literature Survey 
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In the realm of digital imagery, the growing prevalence of image manipulation techniques has necessitated the 
development of robust forgery detection methods. This literature survey explores the evolution of forgery 
detection techniques, spanning from traditional methods relying on hand-crafted features to cutting-edge 
approaches driven by deep learning algorithms. 
 
Mahdian and Saic [2] have employed blur moment invariants to achieve the automatic detection and localization 
of duplicated regions, demonstrating robust performance even in scenarios characterized by blur degradation, 
added noise, and arbitrary contrast variations. Ryu et al. [2] utilizes Zernike moments to discern duplicated 
regions within an image. By capitalizing on the algebraic invariance of Zernike moments, particularly their 
resistance to rotation, the proposed approach exhibits noteworthy efficacy in detecting forged regions, even in 
cases where the manipulated regions have undergone rotation. Amerini et al. [4] utilized Scale Invariant Feature 
Transform (SIFT), which is resistant to scaling, rotation, and illumination variations, making it well-suited for 
localizing image forgeries. Muhammad et al. [5] employed the discrete Dyadic undecimated Wavelet Transform, 
focusing on the approximation and detail sub-bands. These sub-bands were subdivided into overlapping blocks, 
each with a 50% overlap, from which coefficients were extracted as features. The researchers harnessed the 
similarity among coefficients within approximation blocks and the dissimilarity between coefficients in detail 
blocks, utilizing this information for proficient copy-move detection. Haseena et al [6] introduced the Deep 
Texture Variation Network, incorporating convolution and pyramid pooling techniques. It offers a robust solution 
for detecting facial forgery, even in the presence of common image distortions such as JPEG compression and 
blur. 
 
Barad and Goswami [7] proposed a comparative analysis of various deep learning techniques used to detect 
manipulation. For forgery detection, both block-based and keypoint-based deep learning-based methods employ 
manually constructed features such as DCT, DWT, PCA, SIFT, and SURF. The researchers evaluated their 
methods using datasets such as CASIA v1.0, CASIA v2.0, and DVMM. Remarkably, their approaches achieved 
high accuracy rates, with 98.04%, 97.83%, and 96.38% accuracy on CASIA v1.0, CASIA v2.0, and DVMM 
datasets, respectively.  
 
Pun et al [8] introduced an innovative approach for detecting copy-move forgery. Their method utilized adaptive 
over-segmentation to divide the host image into non-overlapping, asymmetrical blocks. SIFT feature elements 
from each block were extracted and stored as BlockFeatures (BF). By matching these feature points, suspected 
forgery areas were approximated. The method was tested on a dataset comprising 80 original images, 80 realistic 
copy-move forgeries, and 108 images of realistic cloning (GRIP dataset). Impressively, even in challenging 
conditions such as geometric transformations, JPEG compression, and downsampling, the method exhibited 
outstanding performance, achieving a detection accuracy of 97.22 percent in identifying copy-move forgeries. 
 
Li and Zhou [9] introduced a keypoint-based copy-move forgery detection algorithm that employs hierarchical 
feature point matching and localization methods. Unlike traditional approaches, this method avoids clustering or 
segmentation techniques. Instead, it proposes an innovative iterative localization approach and hierarchical 
matching strategy to address challenges in keypoint matching. Various techniques, including discrete cosine 
transform (DCT), discrete wavelet transform (DWT), principal component analysis (PCA), and singular value 
decomposition (SVD), were utilized to design block features, enhancing their robustness against common 
distortions like geometric transformations. By leveraging the resilience of the SIFT algorithm and incorporating 
color information from each keypoint, this method achieves remarkably high detection accuracy.On a similar note, 
Abbas et al. [10] presented an efficient copy-move forgery detection and classification model for digital images. 
Their approach involves a lightweight yet robust deep learning model based on a dual-domain convolutional 
neural network. This model enables accurate detection and localization of manipulated regions within digital 
images. 
 
Ortega et al. [11] introduced two deep learning-based models, a custom one and a transfer learning-based one, to 
assess the performance of Copy-Move Forgery Detection (CMFD). CMFD can be implemented using both hand-
crafted and deep learning methods. Previous approaches mainly focused on block-based, keypoint-based, or 
hybrid techniques. The second method employs either original architectures or modified versions of pre-trained 
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architectures like VGG-16. Various techniques, including the Fourier transform, discrete cosine transform (DCT), 
and Tetrolet transform, are employed to extract features using block-based algorithms. The study revealed that 
freezing the model above the block4 pool layer in the VGG-16 pre-trained model led to inferior classifier 
performance. Customized designs with fewer convolutional layers faced challenges in generalization compared to 
models with more layers. The models were evaluated using datasets including CG-1050-V1, CG-1050-V2, MICC-
F220, MICC-F2000, CMFD, CASIA V1, CASIA V2, and MICC-F2000. The accuracy rates achieved were 98%, 
94%, 95%, and 97% for CASIA, CMFD, and MICC-F2000, respectively. 
 
Kang and Cheng [12] presented a methodical strategy and designed a simulation experiment that can efficiently 
and rapidly identify duplicated regions. Producing the singular value matrix from the image blocks using the 
enhanced singular value decomposition method and identifying forgeries in the region by matching image blocks 
using the correlation coefficient are the two primary contributions of this study. The outcome of the experiment 
demonstrates the algorithm's anti-noise and detection capabilities. As digital media evolves, more digital forgery 
techniques will emerge, and these techniques will modify traces in increasingly subtle ways, increasing the need 
for security protection and detection. 100 Testing images of size 512x512 pixels from a Samsung MS 15 digital 
camera were altered using Adobe Photoshop CS for the experiment, which yielded a 97% accuracy rating. 
 
Yue Wu et al. [13] presented a complete DNN solution for image copy-move detection issues. This novel 
technique is wholly trainable, in contrast to conventional systems that involve numerous phases of parameter 
modification and training. Due to this, the forgery mask reconstruction loss is jointly optimised for all modules, 
and it is shown that the model can be trained using only fabricated training data and still outperform conventional 
methods. The initial strategy adequately illustrates the promising future of employing DNNs for problems such as 
image fusion detection and the image copy-move forgery detection problem. The datasets used for evaluation are 
the synthesised 10K dataset and the CASIATIDEv2.0 dataset. The CASIATIDE v2.0 contains 7491 authentic and 
5132 altered-colour images, and the accuracy for the synthesised 10K dataset is 80.35 percent, while the accuracy 
for the CASIATIDE v2.0 is 67.8 percent. 
 
Copy-Move Forgery Detection was proposed by Ahmed et al. [14] and consists of five steps: image pre-
processing, overlapping block separation, determining the statistical feature mean and standard deviation, feature 
sorting into a matrix, and giving the feature vector to the SVM classifier to determine whether the image is real or 
not. Multiple transform domain-based copy-move image forgery detection (CMFD) techniques exist. In a 
blocking strategy, lexicographic sorting and DCT coefficients are utilised. CMFD employs transform types DWT 
and DCT, the stationary transform being DCT. The wavelet transform and the tetrahedral transform Due to their 
high computational complexity, several of these techniques are not resistant to post-processing operations such as 
blurring, lossy compression, or a combination of these operations. Utilised is the MICC-F220 dataset, which 
contains 220 images (110 authentic and 110 forgeries). The system achieves an improved detection rate of 
98.44%. 

Researchers have made significant strides in Copy-Move Forgery Detection (CMFD) by combining local binary 
pattern (LBP) with wavelet transform [15] and singular value decomposition [16]. Additionally, the application of 
center symmetric local binary pattern (CSLBP) [17], a variant of LBP, has enhanced CMFD's resilience against 
noise during feature extraction. Keypoint-based methods have also gained prominence in CMFD research. These 
methods leverage the robustness of keypoint features, making them ideal for handling challenges like scaling, 
rotation, and occlusion. The adoption of scale invariant feature transform (SIFT) in forgery detection [18] has 
paved the way for various SIFT-based transformations, including binarized SIFT [19], opponent SIFT [20], and 
affine SIFT [21], contributing to the advancement of CMFD techniques. 

The survey illustrates the evolution of forgery detection techniques, highlighting the strides made in combating 
sophisticated image manipulations, and emphasizes the critical role played by advanced algorithms and deep 
learning in ensuring the integrity of digital imagery. 
 

3 Proposed Work 
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The research methodology employed in this study focuses on utilizing deep learning techniques to detect copy-
move image forgery, with a specific emphasis on the development and evaluation of an accurate and effective 
Convolutional Neural Network (CNN) model. To ensure seamless data preprocessing without compromising any 
image components, the input images undergo resizing. This step facilitates the subsequent stages of feature 
extraction and classification by optimizing the data's compatibility with the CNN model. The feature extraction 
stage is fundamental to the methodology and is facilitated through a sequence of four convolution layers followed 
by a max-pooling layer. Subsequently, the features extracted are channeled into a fully connected layer, 
consolidating the pertinent information and forwarding it to the softmax layer. This intricate process enables the 
CNN model to discern nuanced patterns within the image, crucial for accurate identification of copy-move 
forgeries. The classification stage, activated after feature extraction, distinguishes between forged and original 
images based on the processed data.  

 
During the training phase, batches of labeled images are fed into the CNN model, allowing it to learn and refine 
its feature extraction capabilities. The training dataset is pivotal in enhancing the network's ability to identify 
copy-move tampering accurately. As the CNN layers progress through the images, deeper layers extract intricate 
features specialized in identifying copy-move forgeries, while the initial layers focus on extracting low-level 
information such as edges and corners. The efficacy of the CNN model is quantified through the calculation of the 
loss function, which measures the disparity between the predicted output and the real labels. Various optimization 
techniques, including the selection of appropriate loss functions, optimization algorithms, mini-batch size, 
maximum number of epochs, initial learning rate, and learning rate schedules, are meticulously explored and 
specified in the training options. These parameters are fine-tuned to ensure the CNN model's optimal performance 
in detecting copy-move forgeries. 

 
Figure 2.  Architecture of the Proposed Network for Copy Move Forgery Detection 

Upon completion of the training process, the CNN model is deployed to detect copy-move forgeries in new 
images. The accuracy of the trained classifier is rigorously evaluated by feeding it test features. Furthermore, the 
CNN model's performance is optimized for multiple metrics, including accuracy, precision, recall, and F1-score, 
through the strategic application of diverse loss functions and optimization approaches during the training phase. 
This comprehensive evaluation ensures the robustness and reliability of the proposed methodology in the realm of 
copy-move forgery detection. 
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The proposed architecture for copy move forgery detection is shown in Figure 2. The architecture has 4 sets 
convolutional layers, max-pooling layers, batch normalization layers and one fully connected layer, a softmax 
classifier that assesses whether the image has been altered are all included in the suggested CNN architecture. The 
convolutional layer then adjusts in order to extract its features when the input layer gets the input image of size 
224 x 224 x 3 and produces a single scalar value representing the chance of the input image being a fake. To 
create its feature maps, the convolution layer employs a unique set of filters (size 3 x 3, stride 1, and padding). By 
employing a layer known as batch normalization, the output of the earlier levels is normalized. 
 

 
Figure 3.  Transfer Learning for Copy Move Forgery Detection 

 
Figure 3 shows the illustration for transfer learning for Copy Move Forgery Detection.  
 
VGG-16 Architecture [22]: VGG-16, a renowned image classification model, was originally developed for the 
ImageNet Challenge utilizing a subset of 1000 classes. Its distinguishing features include a MaxPooling layer 
preceding a stack of 13 convolutional layers, with 3 x 3 and 1 x 1 filters employing a stride of 1 pixel, and 3 fully 
connected (FC) layers. VGG-16's activation function, network depth, number of filters in convolutional layers, 
and the arrangement of convolutional layers before pooling distinguish it from custom-designed architectures. The 
pre-trained VGG-16 model was chosen for this study due to its sequential architecture, facilitating a direct 
comparison between the custom model and the transfer learning model of the same type. Recent research has 
demonstrated the utility of VGG-16 in tasks such as detecting forged images and colorization from online sources. 
Despite having more parameters and longer inference durations than alternative architectures like Inception or 
ResNet, VGG-16 can be pruned for real-time applications without compromising performance. 

 
MobileNet V2 [23]: This study utilizes an upgraded version of the MobileNetV2 model, originally proposed by 
Sandler et al., for image categorization. The model is modified to suit the binary classification task of identifying 
two classes—Authentic and Forged. The base layers of the MobileNetV2 model are frozen to prevent their 
weights from changing during backpropagation. Additional layers, including global average pooling, a dense layer 
with two outputs corresponding to the classes, and a SoftMax function at the output, are added. The model 
employs a 3 x 3 kernel size and can process input images up to 224 x 224 x 3 dimensions. ReLU6 activation, 
batch normalization, and dropout functions are integrated into the design. 

 
AlexNet [24]: In this method, images are divided into blocks, and feature vectors are extracted using AlexNet. 
Comparisons of these feature vectors identify similar blocks, which are then clustered to detect potential forgeries. 
The approach utilizes convolutional operations based on pooling and ReLU activation functions to extract deep 
features. Features are derived from the fully connected f7 layer, with the dataset's images pre-processed and 
resized to 227 x 227 to match the model's initial input layer. Convolutional layers apply a series of filters to 
extract features, generating feature maps indicating the presence of specific features in the input image. The 
output of convolutional layers undergoes processing in fully connected layers, involving matrix multiplications 
and nonlinear transformations, culminating in a softmax function to produce a probability distribution across 
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classes. The predicted class, determined by the highest probability, is compared with the ground truth label to 
assess prediction accuracy. 

 

4 Results and discussion 
This section consists of comprehensive assessment of the proposed approach in different dataset. And the results 
are also compared with the other existing methods. 

 
The Commonly used and well-known datasets like MICC-F2000 [25], MICC-F600 [25], MICC-F220 [25] and 

CoMoFoD [1] are used to evaluate Copy move image forgery detection algorithms. The information regarding the 
datasets are shown in Table 1 and some of the sample images are shown in Figure 4. MICC-F220 comprises a 
total of 220 images, evenly distributed between 110 tampered images and 110 original images. The dimensions of 
these images range from 722 × 480 to 800 × 600 pixels, with the manipulated region accounting for 1.2% of the 
entire image area. MICC-F2000 encompasses 2000 images, divided into 700 tampered images and 1300 original 
images. These images are of high resolution, measuring 2048 × 1536 pixels. In this dataset, the manipulated 
region constitutes 1.12% of the total image area. MICC-F600 comprises 600 images, with 152 images featuring 
tampered regions and 448 images representing the original state. The dimensions of these images vary, ranging 
from 800 × 532 to 3888 × 2592 pixels. Notably, the size of the manipulated region differs across images within 
this dataset. 
 

    

    
Figure 4:  Sample Images from MICC-F2000 database 

 
The two data divisions, original and Forged, were split into 80% and 20% partitions, respectively, for testing 
purposes.  

TABLE 1. Details of the Dataset used 
Dataset Total 

 
Tampered 

 
Original 

 MICC-F220 220 110 110 
MICC-F600 600 160 440 

MICC-F2000 2000 700 1300 
CoMoFoD 9427 4709 4718 

 
Performance Measures: Table 2 displays the confusion matrices of the proposed approaches. In Table 2, the fake 
images are marked with a negative sign while the original ones are marked with a positive sign.  

                     TABLE 2 Confusion Matrices of the Proposed Architecture 
Dataset Classes + - 

MICC-F220 + 21 1 
-  22 

MICC-F600 + 71 17 
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-  32 
MICC-F2000 + 244 16 

-  140 
CoMoFoD + 936 8 

- 7 935 
 

The numbers TP and FP stand for the proportions of falsely discovered tampered images and authentically detected 
altered images, respectively. The number of altered images that were mistakenly used as original images is 
represented by the FN. The number of authentically identified original images is represented as TN. Their decision 
was supported by the fact that Forged images were (correctly) projected to be forged with a higher success rate and 
Real images were (falsely) predicted to be Forged with a lower success rate. The True Positive Rate (TPR), True 
Negative Rate (TNR), False Positive Rate (FPR), False Negative Rate(FNR) for MICC-F220 is 100%, 95.65%, 
4.34% and 0%.  The True Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR), False 
Negative Rate(FNR) for MICC-F600 is 100%, 65.30%, 34.69% and 0%.  The True Positive Rate (TPR), True 
Negative Rate (TNR), False Positive Rate (FPR), False Negative Rate(FNR) for MICC-F2000 is 100%, 89.74%, 
10.25% and 0%. The True Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR), False 
Negative Rate(FNR) for CoMoFoD is 99.25%, 99.15%, 0.74% and 0.84%.   The comparison of recall, precision and 
F1-score for dataset MICC-F220, MICC-F600, MICC-F220 and CoMoFoD are shown in the Table 3. 

TABLE 3 Performance measure of the Proposed Architecture for Copy Move Forgery 
Recognition 

Dataset Precision Recall FI-score 
MICC-F220 0.9562 0.9776 0.0454 
MICC-F600 0.6530 0.7900 0.1931 

MICC-F2000 0.8974 0.9459 0.0615 
CoMoFoD 0.9915 0.9919 0.0084 

In our study, we employed the VGG-16 neural network architecture to tackle the challenging task of copy-
move image forgery detection. Unlike its predecessors like AlexNet, VGG-16 utilizes relatively small 
receptive fields, employing 3x3 convolutions with a stride of 1. This design choice enhances the network's 
ability to capture intricate features within the images. Additionally, VGG-16 differs from previous 
architectures by transitioning from small to large convolution kernels and omitting several fully connected 
layers. This modification increases the model's complexity and parameter count, allowing it to learn more 
intricate patterns from the input data. Table 4 presents the performance measures of the VGG16 model for 
copy-move forgery recognition. However, despite these enhancements, our results indicate that VGG-16 
exhibits varying levels of accuracy across different datasets. On the MICC-F220 dataset, the accuracy stands 
at 50%, while it improves to 61.67% on MICC-F600, further increasing to 66.25% on MICC-F2000, and 
achieving the highest accuracy of 70.23% on the CoMoFoD dataset. 

TABLE 4 Performance measure of the VGG16 for Copy Move Forgery Recognition 
Approach Dataset used Accuracy (%) 

 
VGG 16 

MICC-F220 50 
MICC-F600 61.67 

MICC-F2000 66.25 
CoMoFoD 70.23 

 
MobileNetV2 utilizes inverted residual blocks with bottlenecking features, leading to a significant reduction 
in the number of parameters. This reduction, coupled with a decrease in bottleneck channel size, results in 
improved speed and efficiency compared to its predecessor. 
 
Table 5 presents the accuracy results of the MobileNetV2 approach on different datasets, namely MICC-
F220, MICC-F600, MICC-F2000, and CoMoFoD. The accuracy percentages indicate the model's 
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effectiveness in recognizing patterns within the datasets. For instance, on the CoMoFoD dataset, 
MobileNetV2 achieves the highest accuracy of 78.56%, showcasing its strong performance in image 
recognition tasks with varying complexities and sizes. 

 
TABLE 5 Performance measure of the MobileNetV2 for Copy Move Forgery Recognition 

Approach Dataset used Accuracy (%) 
 

MobileNETV2 
MICC-F220 47.73 
MICC-F600 74.17 

MICC-F2000 69.75 
CoMoFoD 78.56 

 

The provided text discusses the performance of AlexNet, a groundbreaking deep learning architecture 
that significantly influenced the field of machine learning. AlexNet is known for its 5 convolutional 
layers and 3 fully connected layers, a design that surpassed previous models like LeNet due to its 
increased number of filters per layer, stacked convolutional layers, and connections with activation 
functions. Table 6 presents the accuracy results of the AlexNet approach on different datasets, 
including MICC-F220, MICC-F600, MICC-F2000, and CoMoFoD. The accuracy percentages indicate 
the effectiveness of AlexNet in recognizing patterns within these datasets. For instance, on the MICC-
F600 dataset, AlexNet achieves an accuracy of 67.50%. 

TABLE 6 Performance measure of the Alexnet for Copy Move Forgery Recognition 
Approach Dataset used Accuracy 

 
ALEX NET 

MICC-F220 52.27 
MICC-F600 67.50 

MICC-F2000 62.50 
CoMoFoD 69.34 

 
In the comparison of the proposed method with state-of-the-art methods for the MICC-F220 database (Table 

7), MICC-F6000 database (Table 8), MICC-F2000 database (Table 9) several evaluation metrics, including True 
Positive Rate (TPR), False Positive Rate (FPR), False Negative Rate (FNR), and True Negative Rate (TNR), were 
considered. The evaluation results for different methods are summarized below: 

 
TABLE 7 Comparison of the Proposed Method with state of the art method for MICC-F220 

Database 
Authors TRP FPR FNR TNR 

Amerini et al. [26] 100 8 0 92 
Amerini et al. [25] 100 6 0 94 
Mishra et al  [27] 73.64 3.64 26.36 96.36 

Kaur et al [28] 97.27 7.27 2.73 92.73 
Elaskily et al [29] 100 0 0 100 
Elaskily et al [30] 100 1.80 0 98.20 
Proposed Method 100 4.34 0 95.65 

 
 

TABLE 8 Comparison of the Proposed Method with state of the art method for MICC-F600  
Database 

Authors TRP FPR FNR TNR 
Elaskily et al [29] 100 0 0 100 
Amerini et al. [26] 93.42 11.61 6.58 88.39 
Amerini et al. [25] 94.86 9.15 5.14 90.85 
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Elaskily et al [30] 98.40 6.35 1.60 93.65 
Proposed Method  100 34.69 0 65.30 

 
 
 
 
TABLE 9 Comparison of the Proposed Method with state of the art method for MICC-F2000 

Database 
Authors TRP FPR FNR TNR 

Elaskily et al [29] 100 0 0 100 
Amerini et al. [26] 69.20 12.50 30.80 87.50 
Amerini et al. [25] 81.60 7.27 18.40 92.73 
Elaskily et al [30] 94.50 11.35 5.5 88.65 
Proposed Method  100 10.25 0 89.74 

 

In the comparative evaluation across the MICC-F220, MICC-F6000, and MICC-F2000 databases, the proposed 
forgery detection method consistently achieves a perfect True Positive Rate (TPR), indicating its proficiency in 
correctly identifying manipulated regions. Notably, when scrutinizing the MICC-F220 database, the proposed 
method outperforms several state-of-the-art techniques, maintaining a TPR of 100% while exhibiting a relatively 
low False Positive Rate (FPR) of 4.34%. This suggests a commendable balance between accurate detection and 
minimizing false alarms. However, the evaluation on the MICC-F6000 database reveals a higher FPR of 34.69%, 
indicating a potential sensitivity to false positives in this specific dataset. Despite this, the method maintains a 
perfect TPR, showcasing its robustness in identifying actual forgeries. In the context of the MICC-F2000 
database, the proposed method again excels with a flawless TPR and a relatively low FPR of 10.25%.  
 

5 Conclusions 

In conclusion, the proposed CNN-based approach stands as a potent solution for the detection of copy-move 
forgery in images. Leveraging transfer learning, the method harnesses the power of pre-trained deep learning 
models—Alexnet, VGG16, and MobilenetV2—fine-tuned explicitly for the task of forgery detection. This 
custom-designed framework optimizes feature extraction and classification processes, elevating the accuracy and 
efficiency of detecting manipulated content in images. The adaptability of the methodology is underscored by its 
successful application across diverse datasets, namely MICC-F220, MICC-F600, MICC-F2000, and CoMoFoD. 
The experimental evaluations conducted reveal compelling results, solidifying the effectiveness of the proposed 
approach. True Positive Rates (TPR) consistently reaches 100%, demonstrating the method's proficiency in 
correctly identifying tampered images. Notably, the False Positive Rates (FPR) remains impressively low, 
indicating a minimal incidence of false positives—authentic images erroneously identified as manipulated. 
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