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Abstract We describe a new algorithm to transcribe musical note complexes from polyphonic piano music. Our

method is a spectrogram based algorithm, which uses a robust peak detection scheme and forms note complexes

by multiple sample conditional probability in the context of a time-frequency based finite state space approach,

where note onsets are determined implicitly by changes in subharmonics. This paper provides a brief summary

of some of the key algorithms in our method.
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1 Introduction

The musical transcription is defined as the process by which, from hearing a musical piece it can be
possible to reconstruct the sequence of notes forming the score. In other words, it is to obtain a symbolic
representation of the piece that contains all the musical aspects of the same, in addition to identification
of the note, set the tone, rhythm and duration.

Given that the automatic musical transcription problem has profound complexity, we believe there are
several essential ingredients that algorithms addressing this problem must possess in order to be effective.
First a robust low-level analysis of the audio signal is the key to determining notes, since we believe that
the problem is data driven and well described by spectrogram based analysis. A second requirement is
that it should build up a solution by using all data available. This is particularly inspired by Brown and
Sterians [3] [6] view of multiple hypothesis.

A third requirement for musical transcription algorithms is that it should be effective for any instru-
ments. Thus, it must be able to determine note onsets for cases where abrupt transitions in the time
domain are not present. This requirement puts into question suggests that a more reliable algorithm
would be derived from the frequency domain or perhaps from other transform methods.

Finally, we believe that certain implementation issues are important, especially in allowing (1) possi-
bility for producing transcription in near real-time and (2) providing a framework which is extendible and
can easily incorporate new algorithms. Related to the first of these issues, our algorithm processes audio
file streams in blocks, and the finite state approach allows us to save note complexes in dynamic struc-
tures until they are complete. The second point is more difficult to demonstrate, however, we have used
standard C++ object oriented design methodology and have heavily relied upon STL data structures,
thus making the code portable and easily extendible for different algorithms [2].

Main Contributions of Paper: We describe a new set of algorithms for transcription of polyphonic
music. The method we present is based upon transitions between states, which represent note complexes.
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Since our method is a spectrogram method, we describe the low-level peak detection algorithm we devel-
oped, and the peak to note association algorithm. We also show how transitions from one state are based
upon a conditional probability so that decisions of whether a note belongs to a note complex is deferred
until more information is available. In this manner, we eliminate spurious signals and our method is
robustly determines groups of notes. Another aspect of our method is that the onset detection of notes
is done in the frequency domain, so that we are not confined to particular instruments such as the piano,
where the time domain signal provides sharp transitions between notes.

2 Foundations

In almost all algorithms reported in the literature for music transcription, there exist several common
themes, particularly: (1) either a (short-time) fourier and/or wavelet transformation of the acoustic input
signal is performed, converting into the time-frequency or space-scale plane, (2) information from the
time-frequency is used to select peaks using some ad-hoc method, (3) onset detection is determined, and
(4) the association of partials is made to notes. The difference between the reported work is the way in
which each of these methods are implemented. Here we describe the details of the algorithms that we
have developed in performing these common steps.

Principle of Superposition: As is well accepted, and indeed implicit in all other methods [4], is the
principle of superposition. For a polyphonic instrument such as the piano, despite many complications
of sound production through the baseboard and inharmonicity effects, the problem produces stationary
eigenstates ([1], [5]) which add linearly to produce the full time domain signal.

2.1 Definitions and Time Scales

For the purpose of our discussion, there are several different time scales and concepts which we should
like to define carefully. First, the common well known concepts hold: (1) onset/offset times: time at
which a note begins/ends, (2) note nk, is related to the fundamental frequency of oscillation and all
the associated harmonics {ωk} where ωn = nω0, and the fundamental ω0 is perceived as the pitch, (3)
timbre: acoustic attribute of a note, which in general is more important to synthesis than transcription,
as described.

Proper Sample Size: Before describing a note complex, it is interesting to describe the different
time scales and sampling scales of interest. First, the sampling rate is 44.1 KHz, with a sampling interval,
which we call the proper sample, of the distribution approximately 2.5 ms, however is a value that we can
adjust. The sampling rate is sufficient to assure that we are free from aliasing effects. The STFT was
defined with a Chebyshev window with 100dB of sidelobe attenuation. The spectral neighborhood size
for computing refined partial power and frequency estimates was chosen to be 5points, and representing
a bandwidth of 13.5Hz.

The implementation of the algorithm is intimately tied to the proper sample time scale, as we can see in
figure 1, since it is about this size that we apply the entire algorithm. We make frequency transformation
and perform peak detection, note association and determination of note complexes. Furthermore, each
proper sample contains some points of the previous proper sample, following the principle of superposition,
in order to avoid loss of information.

Definition 1 (Note Complex) We define a note complex, Gs = Gs(t1 · · · tk|{n1, · · ·nk}) as the set of
notes n(k)

j (ti, tf ) ∈ Gs, which are voiced during the time frame ∆tτ , or equivalently from sample k to

k+ τ . Furthermore, the notes n(k)
j (ti, tf ) have onset/offset times ti and tf during the time interval ∆tτ .

Finite State or Note Complex Scale: The note complex, Gs in our definition, is the exact
equivalent to our definition of a finite state, or what we call the transcription state S which is the present
state of the transition. Figure 2 shows the transitions from a state representing the present note complex
G(tk) −→ G(tk+τ+1), with conditional 2-state probability P (Gk|Gk+τ+1).

In summary, the time scales for our algorithm are: (1) the proper sample size ∆tk, (2) onsets/offsets
(ti, tf ) times for individual note n(s)

j in a note complex Gs(tk · · · tk+τ ), and (3) time between note complex
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Figure 1: Three proper sample that shows the superposition between them.

Figure 2: Finite state showing transitions probability P (Gs|Gs+1) from note complex Gs to Gs+1.

transitions Gs → Gs+1. We shall describe in subsequent sections how these are important in algorithms
definition.

2.2 Data Association and Inference

As described, an important time scale in the problem is given by the proper sample boundary, since
it is granularity of note resolution. Moreover, at each evaluation we obtain peaks and perform a data
association for obtaining notes. Information from the previous proper sample to decide to include or
exclude a potential note in Gs.

3 The Algorithms and Implementation

As is the case in many musical transcription systems, Figure 3, the basic building blocks are: (1) the
low-level signal analysis, or front-end processing, (2) the subharmonic association or note analysis phase,
and (3) the backend notation and transcription phase.

In the first block, the first issue to do is reading the audio (.wav) file and getting preparing the number
of points in the sample. The FrontEnd block is responsible for obtaining a list of reliable peaks, and the
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Figure 3: Musical Transcription System.

function Note Analysis contains all the algorithms for associating peaks to notes, which are determined
from rules based upon prior samples. Each of these blocks shall now be described in subsequent sections.

3.1 Low-level Signal Analysis

We have found that the low level signal analysis is responsible for obtaining robust transcription results
in subsequent algorithms in the system. The specific parameters of our front-end system, implemented
with the FFTw library, are: (a) a timeslice window of approximately 2.5 ms gives good overall results for
even fast notes, (b) the windowed STFT chosen is a Chebyshev, with 100dB sidelobe attenuation, and
(c) accurate threshold based peak detection to nearly 5kHz.

Peak Threshold function For obtaining the peaks, we developed an ad-hoc thresholding algorithm,
which consists of: (a) a moving average M and (b) a nonlinear fitting function F to adjust for the
background power level across a large frequency range. Thus, once the full threshold curve T (ω) =M+F
is obtained, the peaks are identified as those points greater than T (ω).

The background power spectrum: We know from physics, that the power spectrum always has
the form: P (ω) = a0 + (a1 ∗ ω) exp(−a2 ∗ ω) Thus, we can model very well both the low and high
frequency background if we could fit this function to the actual spectrum. Our procedure consist in
obtaining the constants ai in the above formula by using the well known Levenberg Marquadt nonlinear
fitting algorithm. So that the algorithm converges to appropriate values for ai, we have chosen initial
guesses by simple pre-calculations directly from the power spectrum P (ω). We have found that it is more
important that the fit accurate at high frequency, so we have payed special attention to heavily weight
the initial guesses by the average value of the asymptotic power spectrum, so we set a0 ≈

∑N
k=N−m |Ek|.

The moving average: The moving average provides an excellent centered average the function. A
simple way of writing the moving average at point xj is x̄j = 1/(2p+ 1)

∑j+p
k=j−p xk. After experimenting

with several orders of the moving average, we found that the 5-point and 7-point averages give the best
results, while higher order tend to be far too slowly varying.

Finally, it is necessary to eliminate adjacent points. The algorithm is a standard linked list operation,
which consists of bracketing the adjacent nodes, finding the maximum value within the bracketed set,
and eliminating all but the maximum. A typical example of the peak detection algorithm is shown in
Figure 4. The result of these algorithms is to produce the list (set): F = {po, · · · , pn}.

3.2 Peaks/Note Association Algorithms

Once the set of peaks Fk are obtained from the power spectrum of proper sample k, we must associate
these peaks to subharmonics of notes nj , which may eventually make up a note complex Gs. In peak/note
association, the frequency of each peak ωi is tested against every other ωn ∈ F in order to determine



Inteligencia Artificial 47(2010) 31

Figure 4: Example power spectrum for peak detection.

if the relation ωn = nωi. Once a complete enumeration of all such groupings of multiples is performed,
the fundamental frequency is determined, and hence the note nj through the linear relation n(ω) ≈
2/log(2)log(ω/440).

The note association is greatly reduced by starting with a subset of potential candidate peaks C. A
simple selection method is to search through the list of all frequencies in Fk = {(ω0, a0), · · · (ωn, an)} with
associated amplitudes aj and choose the set of ωj , for j < n where the relative amplitude is greater than
a predetermined threshold a∗j = aj/amax > at. It should be mentioned that this simple selection criteria
works fairly well for piano music but has not been fully tested for other instruments which may exhibit
missing fundamentals ωo.

Definition 2 (Candidates List Ck) A subset of notes obtained from the original set of spectrum peaks,
F . The selection is a dynamic programming technique which eliminates all other possible combinations
and only selects optimal candidates. Subsequent iterations will only consider these candidate peaks as
starting points for constructing notes.

Once the candidate list Ck is obtained, we use this list as potential fundamental frequencies ω0,j for
notes nj and enumerate through the entire list Fk looking for multiples of it in a similar manner as
described, with ωn = nω0,j ± δω, where in practice we allow for a radius of error δω. The resulting list
is referred to as the Preliminary list Pk, because there may be apparent notes nj constructed from the
association process which are really spurious or accidental signals. We formalize the definition of the
preliminary list in the following way:

Definition 3 (Preliminary List Pk) A subset of notes, at sample k, obtained from peak to note asso-
ciation. This list contains potential notes which must be verified by examining conditional probabilities of
previous preliminary lists from the k − 1 sample, Pk−1. We calculate the conditional probability for the
j−th note nkj ∈ Pk by observing the set of features θ.

Definition 4 (The Feature Vector θ) Observable parameters for each note n(k)
j that we obtain from

the kth sample, that include power spectrum properties, number and distribution of subharmonics, energy
values and specific amplitude information. These parameters are used for calculating transition probabil-
ities.
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3.2.1 Parameters

The parameters θ of the note make a reference to physical observable values between the subharmonics.
These values are easily calculated from information we obtain from the spectrum of the sample.

- Spectrum values: (a) Note value (nρ), which is the integer value of the note and the frequency
using fitted model n(f) = a0 log(a1f/440), with constants a0 = 30.26 and a1 = 0.99, (b) the sample
number and time (sk, tk), which is the proper sample number and the time, (c) Amplitude and
frequency (aρj , f

ρ
j ) of note nρ in the note complex C, (d) the number of harmonics (Nh) for note

nρ.

- Energy derived values: (a) Eρt , the total energy obtained by summing amplitude of the sub-
harmonics, Eρt =

∑
k |a

ρ
k|2 for note nρ, (b) energy of the fundamental and of the maximum are

Eρfo = |afo|2 and Eρfmax = |afmax|2 respectively, (c) the relative energy is given by Eρr = Eρt /Efmax,
and (d) the gradient of the total energy, ∇Et is used to test for the onset repeated notes.

- Distribution of subharmonics: An important heuristic for associating notes to note complexes
is based upon the distribution of absent harmonics. There are three quantities of this type which are
of interest: (a) the total number nφ =

∑
k φk, η of missing harmonics (considered in a consecutive

series), (b) individual structure functions ξ, where we define

ξi(k) =

NhX
k

φkH(kj − ki) =

(
1 kj ≤ k ≤ ki

0 otherwise
(1)

and (c) a weighted distribution ηφ, given through the definition: ηφ =
∑
km∈{φk} w(k)km, with

km ∈ {φk} and w(k) = exp(−λ ∗ k)

Upon low-level processing of the subsequent sample k + 1, we perform an update step. In particular,
we rely upon the transition probability matrix Rk between the preliminary lists Pk−1 and Pk.

Definition 5 (Transitional Probabilities) Given a set of preliminary notes, Pk = {nk1 , nk2 , · · · , nkj }
obtained from the proper sample k and its immediate predecessor Pk−1 = {nk−1

1 , nk−1
2 , · · · , nk−1

j }, where
nkj = nkj ({θi}) is the j-th note in the k sample and depends upon the observable parameters {θi}, we
define the matrix Rk of conditional probabilities:

Rk =

{
r1

(
n

k
1 (θ)|nk−1

1 (θ
)
, · · · , rj

(
n

k
j (θ)|nk−1

j (θ
)}

(2)

The elements ri,j of this matrix are formed by considering {θi}, of each nkj , depend on the value of
this parameter and the previous sample.

rj

(
n

k
j ({θi}|nk−1

j ({θi}
)

= 1−
|nk

j ({θi})− nk−1
j ({θi})|

max(nk
j , n

k+1
j )

(3)

3.2.2 Heuristic Decision Rules

Given the subset of parameters of the preliminary note pj , and the associated conditional probabilities
rj , we define a series fo generic heuristic rules that will permit us to determine the note and whether they
can form a part of the Ak list. Table 1 shows the parameters and nominal rules empirically determined,
for harmonic distribution and energy determination.

The last case shows two special cases which pose ambiguities if not careful: (1) case of determining
octaves: where we have found that fourth harmonic must obey the condition a4 ≥ 0.5a0, which unam-
biguously determines the correct octave, and (2) case of repeated notes: since our method is based upon
the idea that onsets are determined by changes in the set of harmonics, we need to observer ∇E ≥ 0 and
r(Et) ≥ 0.

The subset of notes from the preliminary list Pk which have been confirmed from the probabilities of
Rk, are then promoted to the Best note list, or the Ak list. We define this list in the following manner:
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Table 1: Empirically determined Heuristic Rules for inclusion in Ak.
Type Parameters Nominal Rule

Card(Nh) > N
(opt)
h N

(opt)
h = 6 nominal

Harmonic Dist. cond. prob. r(Nh) r(Nh) > 0.75
ξ2(k) ξ2(k) ≤ 1
r(ξ2(k)) r(ξ2(k)) ≥ 0.5
ηφ ηφ ≤ 10
r(ηφ) r(ηφ) ≥ 0.7

Tot.rel. Er(nj) =
P

i ai

amax
E

(opt)
r ≥ 0.2

Energy cond. prob. r(Er) r(Er) > 0.4
∇E 〈∇E〉
Octaves a4 ≥ 0.5a0

Repeated notes ∇E ≥ 0, r(Et) ≥ 0.3

Definition 6 (α-List or Best Note List (Ak)) The set of notes {nρ}, that form the list Rk -the best
notes in the actual proper sample-, obtained from Pk which have been selected by decision rules based
upon the list Rk, that contain the best notes in the actual proper sample. Furthermore, the notes {nρ}
constitutes a subset of the note complex Gs during sample k.

Operationally, the notes in Ak are considered notes and their timing information is saved for back-end
processing. It is necessary to update the α-List from the decision rules and selecting the notes nρ from
Pk which will be promoted to Ak. As indicated in the definition, Ak list represents all the notes in the
note complex Gs during time ∆tk, so Gs(∆tk) = Ak. At k + 1 more notes can enter into Gs.

Mathematically, the state of Ak for sample k is obtained from the function Ak = Ak(Ak−1, Rk,Rk).
In particular, we can write the state equation for Ak in terms of the quantity Rk, which is the result list
of the heuristic decision rule.

Ak =

8>>><>>>:
Ak−1 ∪ κ card(Rk) ≥ card(Rk−1)

where κ = Rk − Ak−1

Ak−1 − κ′ otherwise

where κ′ = Ak−1 −Rk

(4)

The transition from a note complex Gs to Gs+1 corresponds to the list A = ∅, that is there are no
valid notes present in the signal (when an onset takes place). All the notes in Gs that were voiced can
now be written to the back-end processor. We have used an additional list, referred to as the Bk list, for
temporarily storing these notes nρ ∈ Gs and their associated onset/offset times ti and tf respectively.

Definition 7 (Back-end Bk List) A temporary storage list which contains the entire note group which
exists during a time ∆t. It is what gets passed to the back-end processor for writing out a musical score.

Bk =

(
∅ Ak−1 = 0

(Ak−1 − Ak) ∪ Bk−1 otherwise
(5)

Once the note complex is written to Bk, the full back-end stage is called for writing the musical notation,
which in our case is done by hand-crafted scripts for GNU Lilypond.

3.3 Algorithm Operation

A demonstration of the algorithm for a hypothetical case useful to demonstrate the steps. Consider the
following definitions: (a) an individual note n(j)

i , as before, is represented with two indices, i and j, where
j is the note complex, and i is an indices counting the number of notes which enter the alpha queue,
(but may not necessarily be a final note), (b) the time tk is the fundamental time tick; it is the absolute
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time in the segment measured in the middle of the proper sample, and (c) (∆t)j is the duration of a note
group, while ∆ti is the duration of an individual note.

Table 2 shows a hypothetical sequence of samples and the associated detected notes with the state of
each of the queues in the algorithm described above.

Table 2: State of the Queues..
time Prelim.Note Lists Ak,Bk
t1 {n1,n2,n3} A1 = {n2} ,B1 = {}
t2 {n1,n2,n3, n4} A2 = {n2, n3}, B2 = {}
t3 {n2,n3} A3 = {n2, n3}, B2 = {}
t4 {n2, n3, n5, n6} A4 = {n2, n3}, B2 = {}
t5 {n5,n6} A5 = {}, B5 = {n2(t1, t4)

n3(t1, t4)}
t5 {n5,n6} A5 = {n5, n6}, B5 = {}
t6 {n5,n6} A6 = {n5, n6}, B6 = {}
t7 {n6,n7} A7 = {n6}, B7 = {n5(t5, t7)}
t8 {n6,n7, n8} A8 = {n6, n7}, B8 = {n5(t5, t7)}
t9 {n6,n7, n9} A9 = {n6, n7}, B9 = {n5(t5, t7)}
t10 {} {} {n5(t5, t7),

n6(t5, t9), n7(t5, t9)}

The following is a short description of a typical situation of how the algorithm works.

- time t1: from the frequencies and from the subharmonic grouping, three potential notes are placed
into the preliminary list. Imagine that of these three notes, n1 has a low probability, determined
by the number of subharmonics pertaining to it; notes n2 and n3 have a high probability of being
real notes, yet only n2 has a sufficiently high probability for entering into the Ak list directly, so it
is copied into the Ak list.

- time t2; probability of n1 is the same, however the note n2 and n3 are confirmed by previous
observations; also another note n4 is a potential candidate and must wait for further samples before
entering into Ak.

- time t3: n4 does not appear so is eliminated.

- time t4: change of notes; some energy of n2 and n3 is present but weak compared to n5 and n6;
algorithm defers decision to include in Ak.

- time t5: Ak is emptied and its contents are copied to the Bk list; note complex has concluded
and can be written; preliminary note list Pk contains notes n5 and n6. Since they were present
previously, they enter the Ak complex.

- time t6: n5 and n6 appear again, so they remain in Ak list.

- time t7: note n5 disappears from Pk, and it so it gets subtracted from Ak list and gets written to
Bk with onset t5 and offset time t7.

- time t8: note n7 is confirmed and written to Ak; the note n8 enters into Pk with low probability
since it has few subharmonics a low amplitude fundamental; a decision for inserting n8 into Ak is
deferred until the next sample.

- time t9: the decision defer n8 into Ak is justified since it is no longer present; the note n9 appears
but not yet included into Ak.

- time t10: all notes disappear, since there are no observed subharmonics; the condition Ak = ∅
signals writing all contents to Bk and calling the backend processor. The list contains the full note
complex Gs = {n5, n6, n7} with the onset/offset times indicated in the table.
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What is not shown here are numbers indicating how the decisions are actually made to include notes in
Ak which come from Pk. This is the subject of the next subsection.

3.4 Results

A real example, Figure 5, is describing using the next tables. The audio sample has been recording with
a Yamaha electric piano.

Figure 5: Musical segment example.

The first table, Table 3 show the functioning of the front-end of the algorithm. It shows the couple
frequency/amplitude for the first group of notes, the number of subharmonic, and the present notes.

Table 3: Example of a samples and frequency/amplitude for the first four harmonics.
Sample Note Subharmonic
(ind) (Nh) (f, a)
69 (0) -9 (23) {(266, 444)(524, 1005)(790, 109)(1048, 290)}
69 (1) 3 (11) {(524, 1005)(990, 154)(1579, 199)(1995, 98)}
69 (2) 7 (9) {(660, 558)(1313, 125)(1845, 117)(2512, 7)}
· · · · · · · · ·
77 (0) -5 (24) {(330, 328)(660, 884)(990, 230)(1313, 102)}
77 (1) 3 (18) {(524, 1600)(990, 230)(1579, 297)(1995, 151)}
77 (2) 7 (18) {(660, 884)(1313, 102)(1845, 71)(2577, 7)}
· · · · · · · · ·

In Table 4, you can see the diferent values from the observable parameters that we use for forming
the R-matrix. We can see the probabilities in Table 5 .

Table 4: Representative samples for the observable parameters.
ns nρ fρj Nh Et Ef nφ ηφ (ξ1, ξ2, ξ3)
69 -9 266 23 2510 444 0 0 (0, 0, 0)
69 3 524 11 1482 1005 4 7.9 (0, 0, 4)
69 7 660 9 827 558 5 10.5 (0, 2, 3)
72 -9 258 12 1573 259 7 11.7 (0, 0, 7)
72 3 524 10 1082 761 4 8.1 (0, 1, 3)
72 7 660 8 425 219 7 15.3 (0, 4, 3)
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Finally, Table 6 shows the time sample, the preliminary lists and Ak and Bk list as described through-
out the paper.
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Table 5: Example of matrix elements of R.
ns r(fρj ) r(Nh) r(Et), r(nφ), r(ξ1), r(∇E)

r(Ef ) r(ηφ) r(ξ2), r(ξ3)
69 -9 1 (0.5, 0.5) (1, 1) (1, 1, 1) 1170
69 3 0.9 (0.4, 0.4) (0.7, 0.7) (1, 1, 0.75) 760
69 7 0.9 (0.4, 0.4) (0.8, 0.7) (1, 0.5, 1) 438
72 -9 0.6 (0.6, 0.6) (0.8, 0.7) (1, 1, 0.8) -912
72 3 0.8 (0.6, 0.6) (0.7, 0.7) (1, 0, 1) -633
72 7 0.6 (0.4, 0.3) (0.2, 0.2) (1, 0, 0.6) -493
· · · · · · · · · · · · · · · · · · · · ·

Table 6: Example of status of the major lists for note complexes.
tS Pk−1 Pk Ak, Bk

68 {} {−9,−1, 3, 7} {} {}
69 {−9,−1, 3, 7} {−9, 3, 7} {−9, 3, 7} {}
70 {−9, 3, 7} {−9, 3, 7} {−9, 3, 7} {}
75 {−9, 3, 7} {3, 7} {3, 7} {−9}
76 {3, 7} {3, 7, 15} {3, 7} {−9}
77 {3, 7, 15} {−5, 3, 7} {−5, 3, 7} {−9}
82 {−5, 3, 7} {−5} {} {−9, 7, 3,−5}
83 {−5} {−9, 3, 7} {−9, 3, 7} {}
· · · · · · · · · · · · · · ·

4 Conclusions

Our method for constructing note complexes accurately identifies notes from the association of peaks
to notes and using deferred decision making based upon conditional probabilities of physical observable
between samples.

It is interesting to emphasize that for the determination of the notes included in a segment, we only
analyze the information of the present proper sample and some data of the previous one. Also, the
probability matrix definition to calculate the heuristic values of each note becomes of great utility to take
decisions. All parameters can be observed in the frequency domain. It means that it is easy to apply the
method to another instruments with the only condition of knowing the unique profile of each one.

On the other hand, we can obtain an accuracy between the 70% for complex polyphonic samples
and 98% for the simplest ones. These results establish our method on the level of success obtained with
another research works. Furthermore, we can solve with some success simple cases of determining octaves
and repeated notes problems. Although, it is necessary to keep working in it.

A relevant aspect for us in order to continue our work is to implement adaptive own samples inspired
by the concept of adaptive meshes of finite element. The idea is to increase the sample size for segments
with very long notes in the timeline, reducing it for those segments with short notes.

According with the situation aforementioned, the main idea with the proposed ensemble forecasting
aproach is to use a two steps algorithm implementation that, in a first approximation, analyze the energy
of the time domain signal contour and then decide when to vary the proper sample size for later frequency
analysis.
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