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Abstract The early detection and classification of non-functional requirements (NFRs) is not only a hard and

time consuming process, but also crucial in the evaluation of architectural alternatives starting from initial design

decisions. In this paper, we propose a recommender system based on a semi-supervised learning approach for

assisting analysts in the detection and classification of NFRs from textual requirements descriptions. Classifica-

tion relies on a reduced number of categorized requirements and takes advantage of the knowledge provided by

uncategorized ones as well as certain properties of text. Experimental results show that the proposed recommen-

dation approach based on semi-supervised learning outperforms previous proposals for classifying different types

of requirements.

Keywords: non-functional requirements, semi-supervised text learning, requirements classification, recommender

systems.

1 Introduction

Requirements management is the process of eliciting, documenting, analyzing, prioritizing and agreeing
on requirements between stakeholders. As it is the first step of every software development project,
it is a very important and usually time consuming process in which clients and requirement engineers
interact in order to agree on what the system has to do. The overall result is a “list” of functional and
non-functional requirements (NFRs) that describe the system as a whole and how it should perform,
usually without particular details on how it is actually going to do it. NFRs constrain the behavior
and development of a software system as they specify overall qualities or attributes the resulting system
should have. Examples of NFRs include security, performance, availability, extensibility and portability,
among others. These kind of requirements play a critical role in architectural design, so that the early
detection of software quality attributes is desirable in order to take them into consideration starting from
initial design decisions.

Informal textual descriptions written in natural language are a common means for specifying require-
ments in early phases of software projects [19]. Natural language requirements let the clients validate that
what is written actually represents what they want and they are easy to understand by other stakeholders
involved in the project. The study held by Mich et al. [19] showed that most requirements (approximately
79% of the documents) are written in natural language. However, reading, understanding and processing
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all this text is a very hard and remarkably time consuming task for engineers, which may be lightened
by some sort of automatic or semi-automatic computational support.

Numerous attempts have been made to construct automatic tools for assisting developers during the
analysis of textual requirements’ specifications [8, 11, 15, 22]. Both information retrieval (IR) and natural
language processing (NLP) techniques have been applied in the development of tools supporting more
efficient automatic or semi-automatic requirement analysis. For textual requirements expressed in natural
language, the detection and classification of non functional requirements (NFRs) have been approached
using supervised learning techniques [6, 7] and, in some cases, integrated into recommender systems [5, 3].

Recommender systems have become an important research area, mainly due to the abundance of
practical applications that help users to deal with information overload by providing personalized recom-
mendations [1]. These systems are characterized by the ability of making recommendations of potentially
useful information in many application domains, such as web pages [16], news [23], e-commerce [24]
and movies [20], among others. Recommender systems made significant progress over the last decade
when numerous content-based, collaborative, and hybrid methods were proposed and subsequently de-
veloped [12].

In this paper we introduce a recommender system for the automatic detection and classification of
NFRs, using semi-supervised learning and classification techniques [4], that provides assistance to human
analysts in an early software development stage. Recommendations made by the system can be used for
requirement analysis in software development projects, reducing the effort of manual identification and
classification of such documents. In this scenario, requirement analysts should provide a small initial set
of categorized documents, obtaining recommendations about a possible classification of the remaining
documents. Additionally, analysts can provide feedback to refine classification in an iterative process.

The remaining of this paper is organized as follows. Section 2 presents the proposed approach to a
recommender system with semi-supervised categorization of textual requirements for intelligent assistance
to requirement analysts. Empirical evaluation of our approach is summarized in Section 3. Section 4
discusses some related work in the use of recommender systems for text analysis in software engineering
tasks. Finally, concluding remarks are stated in Section 5.

2 Our Approach

Non-functional requirements are one of the hardest problems analysts and designers have to deal with
during software design. NFRs usually specify critical and highly important quality attributes the client
asked for his software, and they not only have to be identified within a possible large set of requirement
documents, but also classified and prioritized.

In a real-world scenario, the analyst of a software development project needs to go through all the
requirement documents gathered by an elicitation team, in order to decide whether they specify functional
or non-functional requirements, as well as the categories or classes each NFRs belongs to (i.e. security,
availability, scalability, etc.), with the ultimate goal of prioritizing and mapping them into architectural
concerns. This is an enormously time consuming task which requires a lot of effort from analysts since
every requirement document must be read and manually classified.

In the following subsections, the proposed recommender system that aids analysts in detecting and
classifying non-functional requirements is detailed.

2.1 Recommender System Overview

The main goal of the proposed recommender system is providing suggestions to the analyst about can-
didate NFRs and their corresponding categories. That is to say, given a set of requirement documents
written in natural-language, a classifier automatically recognizes whether a given requirement is func-
tional or non-functional, and in the second case, it suggests a suitable category or class (i.e. security,
performance, usability, etc.). Afterwards, the recommender system presents the results to the analyst for
inspection and correction in case of misclassification, providing valuable feedback for successive iterations.

To accomplish this goal, the system uses some categorized requirements in conjunction with non-
categorized ones to learn a text classifier using a semi-supervised learning algorithm. The initial set of
categorized requirements can be either detected by the requirement team as they perform interviews with
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Figure 1: Overview of the recommender system for detection and classification of NFRs

users, or established with some alternative approach (such as the simple method of using a pre-defined
fixed set of keywords for classification proposed in [7]). The learned classifier is used to categorize the
remaining unlabeled requirements. Optionally, the requirements classified with the highest confidence
and/or those which received feedback from the analysts can be used as labeled requirements to repeat
the process. Figure 1 depicts an overview of the proposed scheme.

2.2 Semi-supervised Classification of NFRs

The problem of learning classifiers that can predict the class labels of new, previously unseen examples
based on a set of labeled training examples is known as supervised learning. Supervised learning involves
assigning a set of documents to one or more pre-defined classes or categories C =

{
c1, c2, . . . , c|C|

}
, where

each class is supposed to contain documents with certain common properties. In a learning phase, a
supervised learning algorithm is applied to induce a classifier, model or hypothesis, which is in turn used
to predict the class of new documents in a classification phase.

Näıve Bayes classifier is one of the most popular techniques for text classification and has been reported
as performing extremely well in practice in many research studies [18, 10]. The Bayesian approach for
classification consists of finding the most probable class for a new example within a finite set of classes
given the attributes that describe this example.

The estimate probability of a word wt given class cj is the number of times that wt occurs in the train-
ing data Dj divided by the total number of occurrences in the training data for that class. Considering
Laplacian smoothing to handle zero counts for infrequent words this can be formulated as follows:

P
(
wt

∣∣∣cj ; Θ̂
)

=
1 +

∑|D|
i=1 NtiP (cj |di )

|V |+
∑|V |

s=1

∑|D|
i=1 NsiP (cj |di )

(1)

where Nti is the number of times that the word wt occurs in the document di and P (cj |di ) = 1 for
each document in Dj and P (cj |di ) = 0 for documents of other classes.

The class prior probabilities can be also calculated using training data as follows:

P
(
cj

∣∣∣Θ̂) =
1 +

∑|D|
i=1 P (cj |di )
|C|+ |D|

(2)

Given estimates of both parameters calculated from training documents, classification can be per-
formed on test documents by calculating the posterior probability of each class given the evidence of the
test document, and selecting the class with the highest probability. Using Bayes rule and considering
that wdi,k is the word in position k of the document di, this can be formulated as follows:
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Algorithm 1 EM algorithm with naÔve Bayesian classification

1: Learn an initial naÔve Bayesian classifier f from only the labeled set L (using Equations 1 and 2);
2: repeat

// E-Step
3: for each example di in U do
4: Using the current classifier f to compute P (cj |di) (using Equation 3)
5: end for

// M-Step
6: Learn a new naÔve Bayesian classifier f from L ∪ U by computing Pr(cj) and Pr(wt|cj) (using

Equations 1 and 2)
7: until the classifier parameters stabilize
8: Return the classifier f from the last iteration

P
(
cj |di ; Θ̂

)
=

P
(
cj

∣∣∣Θ̂)P
(
di

∣∣∣cj ; Θ̂
)

P
(
di

∣∣∣Θ̂) ≈ (3)

≈
P
(
cj

∣∣∣Θ̂)∏|di|
k=1 P

(
wdi,k

∣∣∣cj ; Θ̂
)

∑|C|
r=1 P

(
cr

∣∣∣Θ̂)∏|di|
k=1 P

(
wdi,k

∣∣∣cr; Θ̂
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It is worth noticing that the transformation from Eq. 3 to Eq. 4 is valid if:

P
(
di |cj ; Θ̂

)
=

|di|∏
k=1

P
(
wdi,k

∣∣∣cj ; Θ̂
)

(5)

which only holds under the assumption of conditional independence.
In supervised learning, the selected algorithm (for example, naÔve Bayes, k -NN, etc.) uses some

labeled training examples from every class to generate a classification function or hypothesis. The problem
of this approach is the large number of labeled examples required to learn a classifier capable of accurately
predicting the label of a novel example. Furthermore, labeling is a time and cost consuming as well as
error prone task since it has to be performed manually by domain experts.

Partially-supervised classification implies that there is no need for full supervision, considerably reduc-
ing the labeling effort required from users or experts. One of the possible strategies for partial supervision,
commonly known as semi-supervised learning, consists of learning from both, labeled and unlabeled ex-
amples, or documents in the case of text categorization. This strategy is also known as LU learning
(L stands for labeled and U for unlabeled). LU learning algorithms are based on a small set of labeled
examples belonging to each class and a considerably larger set of unlabeled examples that are used to
improve learning [17]. Although small, every class must have a set of labeled examples in order to enable
learning.

The EM (Expectation-Maximization) strategy [9] fits into a popular class of iterative algorithms for
maximum likelihood estimation in problems with incomplete data. It consists of two steps, the Expectation
step or E -step and the Maximization step or M -step. Basically, the first step fills in the missing data based
on the current estimation of the parameters and the second step re-estimates the parameters maximizing
the likelihood [17]. Unlabeled documents can be regarded as having missing data because of their lack
of class labels. The parameters found on the M step are in turn used to begin another E step, and
the process is repeated until EM converges to a local minimum when the model parameters stabilize.
Nigam et al. [21] proposed the EM algorithm for LU learning with NaÔve Bayes classification, which is
summarized in Algorithm 1. The parameters that EM estimates in this case are the probability of each
word given a class and the class prior probabilities.

Initially, the documents in the labeled set L have class labels, whereas the documents in the unlabeled
set U have missing class labels. EM is used to estimate the missing class labels based on the current
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Figure 2: Snapshot of the recommender tool for detection and classification of NFRs

model, i.e. to assign probabilistic class labels to each document di belonging to U . Thus, in each iteration
EM assign to every document in U a probability distribution on the classes that it may belong to, i.e.
P (cj |di ) which takes a value in the[0, 1] interval. Instead, documents in L belong to a single class ck that
is known beforehand, i.e. P (ck |di ) = 1 and P (cj |di ) = 0 for j 6= k. Using both the labeled set L and
the unlabeled set U with the assignments of P (cj |di ), a new naÔve Bayes classifier is constructed. This
gives place to the next iteration of the algorithm, continuing until the classifier parameters, i.e. P (wt |cj )
and P(cj), no longer change or exhibit minimum changes.

The basic EM approach is based on the assumption that there is one-to-one correspondence between
mixture components and classes. For textual data, a violation of this assumption is equivalent to saying
that a class may consist of several different sub-classes or sub-topics, each best characterized by a different
word distribution. In principle, the assumption holds in the case of requirements since NFRs focuses in
certain software characteristics instead of multiple topics.

In this work, the EM strategy was implemented as it is described in Algorithm 1 using Java with
the NaÔve Bayes algorithm provided by the Classifier4J 1, a Java library designed for text classification.
This implementation was used to carry out an experimental evaluation of the approach using a dataset
of functional and non-functional requirements. A sample snapshot of the recommender tool with support
for user feedback is shown in Figure 2

3 Empirical Evaluation

In our recommendation approach, the identification of NFRs is focused on semi-supervised text classi-
fication. Thus, the main aspect to evaluate is the performance of this kind of classifiers in categorizing
a set of textual requirements, particularly materialized through the Expectation Maximization strategy.
For comparison purposes, we also tested some other common supervised text classification approaches,
including the Rocchio algorithm [14], which is also known as TF-IDF classifier (bacause this is the

1http://classifier4j.sourceforge.net/
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most frequently used weighting scheme, along with the cosine similarity measure), k-NN [2] and naÔve
Bayes [25].

NFRs are concerned with different software quality attributes a system must exhibit, such as accuracy,
performance, security and modifiability. For the N different non-functional properties to be considered, N
binary classifiers are learned, each one trained to distinguish the requirements belonging to a single class
from those in all of the remaining classes. Hence, during the training process, a document that belongs
to a class is added as a positive example to the corresponding classifier and as a negative example to the
rest of the binary classifiers. At classification time, every document is tested against the N classifiers and
the classifier with the highest output function or probability score assigns the class label. This is also
referred to as one-vs-all scheme in multi-class binary classification.

We used a collection of documents expressing a number of requirements available at PROMISE Soft-
ware Engineering repository2 in order to perform the experiments. This dataset was built by MS. students
at DePaul University during a graduate course on Requirements Engineering. The collection consists of a
total of 370 NFRs and 255 functional ones, corresponding to 15 different software development projects.
Each document is composed by a description of the requirement, written in natural language, the ID of
the project to which it belongs to and a label specifying the type of requirement. These labels indicate
either that the requirement is a functional one or the type of non-functional requirement including the
quality attributes availability, look-and-feel, legal, maintainability, operational, performance, scalability,
security, usability, features and portability. NFRs are divided into the mentioned 11 different classes.
However, the quality attribute portability had a single example in the collection and was excluded from
the experiments due to its low incidence.

The purpose of requirement classification is to identify the type of each textual requirement in the
classes described above. The results of this classification process were evaluated using a multi-label
adaptation for the standard definitions of accuracy, precision and recall metrics [26]. This adaptation
consists of computing an aggregate score across categories, averaging the scores of all binary tasks. These
resulting scores are called macro-averaged accuracy, precision and recall, respectively.

For each experiment, we randomly split the collection into a training set, which is used to learn
binary classifiers for requirements, and a testing set, which is used to evaluate their joint performance in
classifying previously unseen requirements. Every experiment was ran 10 times using stratified 10-fold
cross-validation in order to obtain average scores for the metrics mentioned above. Since the collection
used for experiments has an unbalanced distribution of examples, stratification is used to ensure that
each fold contains roughly the same proportion of examples in each class as in the original collection. It is
important to remark that every training set needs to have at least one document of each class; otherwise,
neither supervised nor semi-supervised classifiers can learn to distinguish examples in that class.

The Expectation Maximization strategy with naÔve Bayesian classifiers was implemented according
to the algorithm detailed in Algorithm 1. To evaluate the effectiveness of the classifiers learned with
this algorithm, we calculated the accuracy of categorizing the collection of requirements using different
sizes of the training set and, consequently, different proportions of labeled and unlabeled examples for
learning classifiers. We split the collection into 468 requirements (approximately 75% of the collection)
for training, preserving the remaining 156 (approximately 25%) for testing.

Figure 3 compares the experimental results obtained with EM strategy and other classical algorithms
for supervised text categorization as naÔve Bayes, k -NN and vectorial word matching with TF-IDF, using
the same split of requirements. EM outperforms these algorithms in terms of accuracy since unlabeled
requirements provide some insights about the different types of requirements that are exploited during
learning, for instance words that tend to appear together in positive examples of a certain type of
requirements or belong to negative examples of such type.

These experiments were performed using increasing percentages of the training set as labeled examples
and the remaining requirements, also in the training set, as unlabeled ones. The 100% of labeled examples
corresponds to the total of the 468 requirements in the training set, whereas the size of the test set is
maintained along all the experiments (156 requirements). It can be observed in the figure that the
semi-supervised approach proposed in this paper takes advantage of unlabeled examples to improve
classification accuracy in comparison with a supervised approach using naÔve Bayes, which is based
exclusively on labeled examples.

2http://promisedata.org/?p=38
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Figure 3: Comparison of several classification algorithms versus semi-supervised EM strategy

In the results described before, accuracy was calculated considering both functional and non-functional
requirements of different types (availability, look-and-feel, maintainability, etc.). However, the goal of
the classification approach introduced in this paper is to identify NFRs in their corresponding categories.
Figure 4 shows the precision of classification for functional requirements and the average for the different
categories of NFRs. Naturally, precision is slightly better for functional requirements as they outnumber
NFRs in the different categories (255 requirements are functional, whereas NFRs range from 10 to 67
requirements per category).

NFRs are not only distinguished from functional requirements, but also classified into different classes
according to their type with a high level of precision. Even using a reduced number of labeled examples
for training the classifiers, semi-supervised classification reaches good levels of performance. Figure 4,
for instance, shows that EM overcomes the 75% of precision for NFRs with less of 25% out of the total
number of training requirements being labeled.

Figures 5(a) and 5(b) detail the classification results for each class of NFRs in terms of precision
and recall respectively. Among the categories with the poorest performance are Features and Legal
requirements which are also the ones with the smaller number of examples. Some scores were affected by
an initial low recall caused by the variety of candidate classes and the existence of some categories with
only a few examples. The effectiveness of all the classifiers improves as more labeled requirements become
available and classifiers are able to better distinguish requirements in each class. In a real-world scenario,
the increase in the amount of labeled examples will be given by processing feedback from analysts. It is
also important to notice that the present collection covers requirements in 15 different projects, so that it
may be some variability in the vocabulary employed to describe them. An improvement in classification
performance can be expected if documents belonging to a single software project are considered during
learning.

4 Related Work

Recommender systems have become popular to assist developers in finding reusable and related content
in software engineering tasks. In a recent survey on recommendation systems for software development,
Happel and Maalej [12] introduced a novel landscape of software development recommendation systems
and lined out several scenarios for knowledge sharing and collaboration, aiming at improving context-
awareness and particularly addressing information providers. Castro-Herrera et al. [3] proposed a hybrid
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recommender system for requirements elicitation in large-scale software projects, using unsupervised
clustering techniques to identify cohesive and finely grained topics, building user profiles according to these
topics. However, despite all the advances achieved during the last years, there is still the need for further
improvements to make recommendation methods more effective in a broader range of applications [1].

The application of information retrieval (IR) and natural language processing (NLP) techniques for the
analysis of requirements expressed in natural-language has been proposed in several works as a method
to help analysts in the detection and classification of NFRs concerning different aspects of software, but
has not been successfully approached as a recommender system. The problem of detecting and classifying
NFRs was tackled from a supervised classification point of view by Cleland-Hung et al. [6, 7]. In these
works, a NFR classifier uses a training set of pre-classified requirements to discover a set of weighted
indicator terms for each NFR type, i.e. security, performance, etc. Hence, the likelihood of a new
requirement to suit a certain NFR type is computed as a function of the occurrence of the corresponding
indicator terms within the text of this requirement. The NFR classifier outperforms the results of other
supervised classifiers such as naÔve Bayes and standard decision trees, even considering different schemes
for feature subset selection [13].

The main drawback of applying supervised methods to NFR detection is related to the amount of
pre-categorized requirements needed to reach good levels of precision in the classification process. The
NFR classifier uses data from past projects to classify novel requirements in ongoing projects. However,
the use of distinctive vocabulary, domain terminology and writing styles across different projects as well
as requirement elicitation teams hinder the application of this method. Conversely, the recommendation
approach proposed in this paper is based on a classification technique that iteratively classifies require-
ments gathered for a single project starting from a few categorized requirements and exploiting statistical
properties of texts, helping analysts in this hard task.

5 Conclusions

In this paper we introduced a recommender system for detection and classification of NFRs within a set
of requirement documents based on semi-supervised learning techniques, aiming at reducing the effort of
requirement analysts during an early development stage. Given a small number of manually categorized
requirements, the recommender system splits them into functional and non-functional, and then suggests
possible categories for the detected NFRs by taking advantage of underlying characteristics of texts.
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Figure 5: Classification performance for NFRs in terms of precision and recall
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Experimental results demonstrate the feasibility of using semi-supervised learning as a method for
detecting NFRs. Empirical evidence showed that semi-supervision requires less human effort in labeling
requirements than fully supervised methods, and can be further improved based on feedback from analysts
within a decision support system for managing requirements as the proposed recommender system.

This approach can help to mitigate the labeling effort required from analysts, involving the manual
revision and classification of available textual requirements. In future works we are planning to introduce
active learning in this iterative classification process striving to reduce even more the required labeling
effort while retaining the accuracy by selecting the examples to be labeled by analysts in an intelligent
way (i.e. analysts should be asked to label the more informative examples instead of the top ranked
ones).
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