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{sanchez,pla}@uji.es

Abstract

The present paper shows that the accuracy of nearest neighbor classifiers can be improved by incorporat-
ing large amounts of unlabelled patterns into a training set with a (possibly) reduced number of labelled
instances. The semi-supervised learning algorithm here introduced is primarily based on a set of techniques
strongly related with the popular nearest neighbor classifier, mainly in the direction of filtering the training
set. Experimental results, obtained using several benchmark data sets taken from the UCI Machine Learning
Database Repository, show that the employment of unlabelled data can effectively reduce classification error
by up to 16%. In order to achieve such an increase in performance, it is necessary to conveniently process
the unlabelled patterns by means of some editing (filtering) technique. Otherwise, errors produced by mis-
classifications could be incorporated into the training set, thus importantly degrading the final classification
accuracy.

Key words: Semi-supervised Learning, Editing, Classification, Nearest Neighbor Rule, Nearest Centroid
Neighborhood.

1 Introduction

Learning algorithms have been traditionally
sorted into two broad categories: supervised
and unsupervised, depending on whether labelled
data are available or not. In a supervised sce-
nario, the learner is mainly based on the infor-
mation supplied by a a set of labelled instances
(training set, TS) that are assumed to correctly
represent all the relevant classes. Violation of
this assumption may seriously deteriorate the fi-

nal classification accuracy achieved by the learn-
ing system.

Supervised classification methods usually operate
in two steps: a) the learning or training phase, for
the system to acquire the necessary knowledge
from the labelled instances to make itself able to
differentiate among the regarded classes; and b)
the classification or operational phase, wherein
the system proceeds to identify new unknown
cases as members of the considered classes. Sec-
ond stage is not started before completion of the
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first one and thereafter, no new knowledge is at-
tained.

In the unsupervised learning problem, the learner
is provided with only unlabelled examples. The
task is to find ”clusters” or groups of similar
cases that probably correspond to the underlying
classes. Unsupervised learning is often applied
to discover structure, regularities or categories in
the data, but typically requires human analysis
to determine whether the discovered regularities
are interesting, and to determine the true corre-
spondence between clusters and meaningful cate-
gories.

Since the early 90’s a third approach to learning,
namely partially supervised, has received much at-
tention [5, 6, 7, 22, 23, 27]. This paradigm con-
ceptually represents a compromise between su-
pervised and unsupervised learning, thus using
a (generally) small number of labelled instances
together with a (possibly) large set of unlabelled
samples. Relevance of partially supervised learn-
ing systems is due to the fact that in many
practical applications, collecting labelled train-
ing instances can be costly and time-consuming,
while it is frequently easy to obtain unlabelled
examples. Consequently, it results interesting
to develop algorithms capable of employing both
labelled and unlabelled data for classification.
Learning from partially labelled data is also re-
ferred to as semi-supervised learning [3, 20].

This paper presents an idea to implement a clas-
sification system that not only can learn by op-
erating with the labelled training instances, but
could also benefit from the experience obtained
when classifying new unlabelled patterns. The
approach for working with an ”ongoing learning”
capability presents some interesting advantages:
the classifier is more robust because errors or
omissions in the original TS can be further cor-
rected during operation and, on the other hand,
the system is capable to continue adapting itself
to a possibly changing (non-stationary) environ-
ment.

The ultimate aim is to facilitate the learning sys-
tem to progressively increase its knowledge and
consequently, to enhance the final classification
accuracy. In our proposal, the nearest neighbor
(NN) rule is employed as the central classifier,
mainly because of its flexibility. Because a basic
goal is to make the ongoing learning procedure
as automatic as possible, it has been designed to
work by incorporating new examples into the TS
after they have been labelled by the own system.

This way, however, presents the danger of per-
formance deterioration by the inclusion of poten-
tially mislabelled patterns to the TS. In order to
minimize the risk of introducing these errors, we
will employ some filters that detect and discard
those possibly mislabelled cases.

The rest of the paper is organized as follows. Sec-
tion 2 provides a general description of the k-
NN rule along with the most important pros and
cons of using this classifier in real-world domains.
Moreover, Section 2 also reviews several editing
procedures and describes a recent filtering algo-
rithm based on an estimate of class conditional
probabilities. In Section 3, we introduce the new
learning system proposed in the present paper.
Section 4 describes the experimental set-up and
the data sets used in the corresponding empirical
study. Next, in Section 5 we discuss the results.
Finally, the main conclusions of this work and
possible directions for future research are outlined
in Section 6.

2 The k-Nearest Neighbors
Rule

One of the most widely studied supervised clas-
sification approaches corresponds to the well-
known k-NN decision rule [10]. In brief, given
a set of n previously labelled examples, say X =
{(x1, ω1), (x2, ω2), . . . , (xn, ωn)}, the k-NN classi-
fier consists of assigning a new input sample x to
the class most frequently represented among the
k closest instances in the TS, according to a cer-
tain similarity measure (generally, the Euclidean
distance metric). A particular case of this rule
is when k = 1, in which an input sample is de-
cided to belong to the class indicated by its closest
neighbor.

Several properties make the k-NN classifier quite
attractive, including the fact that the asymptotic
risk (i.e., when n → ∞) tends to the optimal
Bayes risk as k → ∞ and k/n → 0 [9]. More-
over, if k = 1, the upper bound of the 1-NN
classification error rate is approximately twice
the Bayes error [10]. The optimal behavior of
this rule in asymptotic classification performance
along with a conceptual and implementational
simplicity make it a powerful classification tech-
nique capable of dealing with arbitrarily complex
problems, provided that there is a large enough
number of training instances available.
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However, in many practical situations, such a the-
oretical maximum can hardly be achieved due
to certain inherent weaknesses that significantly
reduce the effective applicability of k-NN clas-
sifiers. In particular, the performance of these
rules, as with most non-parametric classification
approach, is extremely sensitive to data complex-
ity [11].

For example, classification accuracy of k-NN clas-
sifiers significantly drops down in domains where
many data attributes are irrelevant [24]. Such
attributes inappropriately affect the values re-
turned by most dissimilarity metrics. Another
problem using the k-NN rule refers to the seem-
ing necessity of a lot of memory and computa-
tional resources (especially, in applications with
a huge number of training examples). On the
other hand, these classifiers cannot be straight-
forwardly employed in domains with missing at-
tributes. Also, the class imbalance (i.e., high dif-
ferences in class distributions) has been reported
as an obstacle on applying distance-based algo-
rithms to real-world problems [16].

On the other hand, class overlapping and noise
or imperfections in the TS negatively affect the
performance of the k-NN classifiers, and this
has been widely demonstrated in many empir-
ical studies (e.g., see [26]). That is the rea-
son why a considerable amount of works have
been devoted to improve the classification accu-
racy by eliminating outliers from the original TS
and also cleaning possible overlapping between
classes. This strategy has generally been referred
to as editing or filtering [13].

2.1 Some Editing Algorithms

The general idea behind almost any editing proce-
dure consists of estimating the true classification
of instances in the TS to retain only those which
are correctly labelled. Differences among most
editing schemes refer to the classification rule em-
ployed for editing purposes along with the error
estimate and the stopping criterion [14].

The first proposal to select a representative sub-
set of labelled instances corresponds to Wilson’s
editing [30], in which the k-NN classifier is appro-
priately used to keep in the TS only good exam-
ples (that is, training instances that result cor-
rectly classified by the k-NN rule). Tomek [28]
extended this scheme with a procedure that uti-
lized all the l-NN classifiers, with l ranging from

1 through k, for a given value of k.

The generalized editing [19] consists of removing
some “suspicious” instances from the TS and also
changing the class labels of some other instances.
Its purpose is to cope with all types of imperfec-
tions of the training instances (mislabelled, noisy
and atypical cases). Recently, the generalized
editing and Wilson’s algorithm have been jointly
used for the depuration method [2].

In the case of editing algorithms based on the
leaving-one-out error estimate (Wilson’s scheme
and its relatives), the statistical independence be-
tween control and training instances cannot be as-
sumed because their functions are interchanged.
In order to achieve this statistical independence,
classification of instances can be performed in a
holdout manner. Thus, the Holdout editing [13]
consists of randomly partitioning the initial TS
into b > 2 blocks of instances, B1, ..., Bb, and
then eliminating cases from each block using only
two independent blocks at the same time. Devi-
jver and Kittler [13] also introduced the Multiedit
algorithm, which basically corresponds to an it-
erative version of the Holdout scheme using the
1-NN rule.

A genetic algorithm [21] was also applied to de-
fine an edited set for the NN rule. Two different
criteria were employed as the fitness function: the
apparent error rate, and a criterion based on the
certainty of the classification. The empirical re-
sults showed that the latter selected a popula-
tion with chromosomes corresponding to subsets
of the initial TS that provide higher classifica-
tion accuracy in comparison with the whole orig-
inal set, with random selection and with Wilson’s
technique.

Sánchez et al. [25] presented an editing algorithm
based on some types of proximity graphs, such
as the Gabriel Graph and the Relative Neigh-
borhood Graph. This firstly computes the cor-
responding graph structure and then eliminates
instances incorrectly classified by its graph neigh-
bors. On the other hand, a combined editing-
condensing scheme was also introduced to remove
internal instances as well as border cases by using
the concept of graph neighbors.

The rationale of the edited k-NN rule proposed by
Hattori and Takahashi [15] is very similar to that
of Wilson’s scheme. In this method, the condition
for an instance p to be included in the edited set is
that all the k nearest neighbors must be from the
class to which p belongs. Accordingly, this con-
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dition is much more severe than that in Wilson’s
algorithm and as a consequence, the number of
instances in the resulting edited set is equal to or
less than that in Wilson’s edited set.

The ACC filtering technique [17] tries to find cen-
ter instances of compact regions by considering
the classification performance of each example in
the TS. Each training instance is classified by its
nearest neighbor. If it is correctly classified, then
accuracy of its nearest neighbor will be increased.
After processing all the training instances, the al-
gorithm discards those examples with accuracy
lower than a certain threshold. As center in-
stances are usually neighbors of other instances
from the same class, they generally gain high ac-
curacy, thus being retained by ACC.

A slight modification of the original Wilson’s al-
gorithm consists of using, instead of the k-NN
classifier, an alternative rule based on the k near-
est centroid neighbors (k-NCN) [26], which has
been demonstrated to be superior to the tradi-
tional k-NN classifier in many practical situa-
tions. This kind of neighborhood is defined taking
into account not only the proximity of instances
to a given input pattern, but also their symmet-
rical distribution around it.

Let p be a given point whose k nearest centroid
neighbors should be found in a given TS. These
k neighbors can be searched for through an iter-
ative procedure in the following way [8]:

1. The first nearest centroid neighbor of p cor-
responds to its nearest neighbor, say q1.

2. The i-th nearest centroid neighbor, say qi

(i ≥ 2), is such that the centroid of this
and all previously selected nearest centroid
neighbors, q1, . . . , qi is the closest to p.

2.2 Editing by Estimating Class
Conditional Probabilities

Recently, new editing schemes have been pro-
posed, in which the elimination rule is based on
an estimation of the probability of each training
instance to belong to a certain class, that is, con-
sidering the form of the underlying probability
distribution in the neighborhood of a point [29].
In order to estimate the values of these distri-
butions, we can compute the distance between a
given sample and the training instances.

Given a sample, the closer an instance, the more
likely this sample belongs to the same class as the
one of such an instance. Accordingly, let us define
the probability Pi(x) that a sample x belongs to
a class i as:

Pi(x) =
k∑

j=1

pj
i

1
1 + δ(x, xj)

(1)

where pj
i denotes the probability that the j-th

nearest neighbor xj belongs to class i, and δ rep-
resents a certain distance function. Initially, the
values of pj

i for each instance are set to 1 for its
class label assigned in the TS, and 0 for the other
classes.

The meaning of the above expression states that
the probability that a sample x belongs to a class
i is the weighted average of the probabilities that
its k nearest neighbors belong to that class. The
weight is inversely proportional to the distance
from the sample to the corresponding k nearest
neighbors. After normalizing, we obtain:

PN
i (x) =

Pi(x)∑L
j=1 Pj(x)

(2)

where L represents the number of classes.

From this, we can derive a new decision rule,
namely k-Prob, in which a new sample x will be
assigned to the class whose probability PN

i (x) is
maximum.

Following the general scheme of Wilson’s editing,
the new algorithms consist of eliminating from
the TS those instances whose label does not coin-
cide with that assigned by the decision rule based
on class conditional probabilities (k-Prob).

A further extension to this proposal consists of
considering a threshold, 0 < µ < 1, in the clas-
sification rule, with the aim of eliminating those
instances whose probability to belong to the class
assigned by the rule is not significant. Corre-
spondingly, we are removing samples from the TS
that are in the decision borders, where the class
conditional probabilities overlap and are confus-
ing, in order to obtain edited sets whose instances
have a high probability of belonging to the class
assigned in the TS.
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3 Adding Unlabelled Data
on the Training Set

A basic goal of the learning system presented in
this paper is to make it as automatic as possible.
Accordingly, the procedure has been designed to
work by incorporating new patterns into the TS
after they have been labelled by the own system
(without the participation of a human expert).
However, it is evident that this working method
can be self-defeating, in the sense that these new
training elements will have the class label directly
assigned by the decision rule. Therefore, there is
the risk to add several mislabelled cases on the TS
and consequently, to degrade the overall system
accuracy. The system we have designed attempts
to overcome such a difficulty by employing some
editing algorithms.

On the other hand, albeit the original training
instances are generally labelled by human ex-
perts (or, at least, under their supervision), it
is still possible to introduce errors into the initial
TS. Correspondingly, our first task will consist
of looking for outliers (noisy, atypical and misla-
belled patterns) in the TS in order to obtain a
collection of correctly labelled instances.

In summary, the learning procedure for partially
supervised domains will consist of the following
steps:

1. Initial TS is stored in memory.

2. A first filter is applied to the original TS in
order to remove possible noisy instances. As
a by-product, it also produces a certain re-
duction in the TS size. The resulting edited
set will be here referred to as base knowl-
edge.

3. Classification phase starts with the base
knowledge working as the current TS.

4. The set of new labelled patterns (those
classified during the previous step) is now
edited in order to detect possible misclas-
sifications. The patterns identified as er-
roneous by the filtering algorithm will be
removed from that set.

5. The base knowledge is now updated by in-
corporating the new labelled patterns that
have not been discarded in the previous
step.

6. Return to Step 3 with the new base knowl-
edge.

For the filters considered in this procedure, one
could employ any editing algorithm present in the
literature. For example, in this paper, we have
applied two of the schemes introduced in Sec-
tion 2: the k-NCN editing, and the first algorithm
based on class conditional probabilities, namely
WilsonProb [29]. Analogously, the classification
phase (Step 3) can be performed by applying any
classifier. In particular, here we have tested the
classical k-NN decision rule, the k-NCN classifier,
and the new k-Prob classification scheme.

Note that the original base knowledge (i.e., the
initial TS) constitutes the only supervised ele-
ment of our learning system. The unsupervised
component comes from the unlabelled patterns
that are sequentially classified (Step 3) and edited
(Step 4) by the own system.

3.1 Related Works

The EM-based algorithms are among the most
widely-used in semi-supervised learning. EM it-
erates between estimating model parameters and
inferring soft labels for unlabelled points. It as-
sumes a generative model (typically a mixture of
Gaussians) and has been applied to text clas-
sification [23] and face pose determination [1].
Unfortunately, when the data does not match
EM’s generative assumptions, the algorithm goes
astray, and the information from labelled data is
overwhelmed by unlabelled patterns

Dasarathy [12] proposed a decision system with
a design very related to ours. He was also con-
cerned with the robustness of the system through
varying domains and with the problem of unrep-
resentative pre-training. The latter is what he
called ”partially exposed environments”. Conse-
quently, Dasarathy presented an on-line adaptive
learning system with two capabilities: a) to pro-
gressively improve the classification of patterns
belonging to the known classes and, b) to detect
the objects not belonging to the currently known
classes

However, Dasarathy’s system requires the steady
participation of a human expert to be in charge of
the evaluation of the labels assigned by the sys-
tem to new patterns and to decide which of them
are to be incorporated into the TS. Unfortunately,
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in real-world operational phase, such operator su-
pervision may be unavailable. We avoid this bot-
tleneck by including in our procedure the neces-
sary tools to allow the system to decide which
pieces of new knowledge are trustworthy enough
to be accepted.

More recently, Bennett et al. [4] introduced an
adaptive semi-supervised ensemble method that
constructs classification ensembles based on both
labelled and unlabelled data. The algorithm al-
ternates between assigning ”pseudo-classes” to
the unlabelled data using the existing ensemble
and constructing the next base classifier using
both the labelled and pseudolabeled data.

Similarly, Zhou and Li [31] proposed a semi-
supervised learning algorithm, namely tri-
training, which generates three classifiers from
the original labelled example set. These classi-
fiers are then refined using unlabelled examples in
the tri-training process. In detail, in each round
of tri-training, an unlabelled example is labelled
for a classifier if the other two classifiers agree on
the labelling, under certain conditions.

4 Experimental Set-Up

In the experimental study, we have included six
data sets taken from the UCI Machine Learn-
ing Database Repository (http://www.ics.uci.
edu/~mlearn). To increase statistical significance
of the results in domains with a limited number
of examples, the 5-fold cross validation technique
has been applied to the experiments in this paper.
About 80% out of the total number of patterns
available has been used for training and the rest
for a test set. The results reported here corre-
spond to the average over the five random parti-
tions.

For each fold, the training patterns were ran-
domly divided into a number of partitions, all
keeping the a priori class probabilities. One of
these random partitions is used as the initial TS,
while the rest will be employed as sets of unla-
belled data in order to simulate the sequence re-
quired for developing the capability of increasing
the knowledge by means of the algorithm intro-
duced in the previous section.

The main characteristics of the data sets used
in the present experiments are summarized in
Table 1. The seventh column (Partitions) indi-

cates the number of random partitions produced
for each database. This means that for exam-
ple, in Breast database the classification system
will have eight opportunities to increase its base
knowledge, that is, the number of sets with un-
labelled data (besides the initial TS). By this, it
is evident that the amount of labelled instances
is much smaller than that of the unlabelled pat-
terns. The reason is that, as already stated in
Section 1, in real applications collecting labelled
examples often becomes a costly and difficult pro-
cess, thus we are here reproducing this practical
situation.

The experiments consist of comparing the 1-NN
classification accuracy when using the initial TS
with that obtained when incorporating the new
labelled patterns to the TS after processing each
of the partitions. The aim is to evaluate the ca-
pability of increasing the knowledge with the ap-
plication of our learning algorithm in a partially
supervised environment. As a baseline, the last
column in Table 1 provides the 1-NN classifica-
tion accuracy when using the original TS (note
that this corresponds to one individual partition)
without any editing.

5 Empirical Results

Table 2 and Table 3 provide the classification ac-
curacies over the different databases used in the
present experiments. The first column (t) refers
to each partition included in the process. Thus
t = 0 represents the initial base knowledge, that
is, the original TS after being edited. The set
obtained at any time t > 0 is then incorporated
into the previous knowledge (the set of instances
available at time t−1). For example, in t = 1 the
current knowledge refers to that acquired in t = 0,
and it is now employed to classify the first set of
unlabelled patterns. After classifying, we edit the
new labelled instances in order to discard possible
misclassifications. Then, the current knowledge is
updated by including the instances that have not
been eliminated during the editing stage. The
result will correspond to the input set in t = 2.

The meaning of Alg1, Alg2, Alg3, and Alg4 in
Tables 2– 4 is as follows. In the case of Alg1, we
have employed the k-NCN algorithm for editing
and the k-NN rule for classification. Alg2 uses the
k-NCN algorithm both for editing and for classi-
fying new patterns. Alg3 applies Wilson-Prob for
editing and the k-Prob decision rule for classifi-
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cation. Finally, Alg4 is equal to Alg3, but using
the nearest centroid neighborhood instead of the
classical nearest neighborhood. Values in bold
type indicate the first occurrence of the highest
accuracy for each algorithm and each database.

From the results reported in Tables 2– 4, some
conclusions can be drawn. First, it has to be
noted that all implementations outperform the 1-
NN classification accuracy reported as a baseline.
On the other hand, except Alg3 when applied
over Diabetes, German and Satimage databases,
all the other cases show a certain improvement in
performance with respect to the original edited
TS (t = 0). From this observation, Alg3 ap-
pears as the alternative with the poorest re-
sults. Nonetheless, in terms of accuracy, it is
not straightforward to decide which learning algo-
rithm is the best. In practice, any of those three
algorithms (Alg1, Alg2, and Alg4) could consti-
tute a good solution for increasing the knowledge
in a partially supervised environment.

It is worth pointing out the fact that in general,
the system obtains a maximum value in perfor-
mance after processing a relatively small number
of partitions. This is important because it can
mean that after a number of iterations, the in-
clusion of more instances does not provide more
information to the system. In this situation, the
system increases the size of the TS, but without
increasing the useful knowledge. This is a crucial
issue that will be investigated in further exten-
sions to this work.

6 Conclusions and Further
Extensions

In this paper, a learning algorithm to increase
the knowledge in partially supervised environ-
ments has been introduced. It makes use of a
reduced number of labelled instances and a (pos-
sibly) large amount of unlabelled patterns. The
system includes a set of tools allowing to filter the
new knowledge acquired during operation. Thus
we pursue to avoid the risk of incorporating sev-
eral mislabelled patterns into the TS and con-
sequently, to degrade the overall system perfor-
mance.

In the empirical evaluation of the learning system,
we have used different classification rules and sev-
eral editing algorithms. Except in the case of em-
ploying a scheme based on class conditional prob-

abilities for both classification and editing (Alg3),
all the other alternatives have been demonstrated
to perform well enough for increasing the knowl-
edge (reducing the classification error).

An important issue related to the performance
of a system with the capability of increasing its
knowledge refers to the possibility for the TS size
to grow too much and consequently, some prob-
lems related to storage space and classification
time can make such a system useless. Although
editing has the property, as a by-product, of re-
ducing the TS size, this is not achieved in a con-
siderable amount. Accordingly, possible exten-
sions to this work are in the direction of includ-
ing some techniques to intelligently reduce the TS
size. To this end, both adaptive and selective
condensing algorithms [18] can be of interest to
control the TS size.

Also, the possibility of discovering new classes not
present in the original TS can result especially im-
portant for this kind of learning systems in par-
tially supervised domains. Therefore, future re-
search includes the study of unsupervised (clus-
tering) techniques in order to incorporate this ad-
ditional capability into the learning system here
presented.
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Classes Features Size % Class 1 % Class 2 Partitions NN Accuracy
Breast 2 9 683 65.2 34.8 9 92.48
Diabetes 2 8 786 34.9 65.1 10 66.32
German 2 24 1002 70.4 29.6 13 65.81
Heart 2 13 270 55.6 44.4 8 53.33
Satimage 6 36 6453 18 81.01
Texture 11 40 5500 16 91.74

Table 1: A brief summary of the UCI databases used in the experiments. The a priori probabilities in the
Satimage database are 23.8%, 10.9%, 21.1%, 9.7%, 11.0%, and 23.5%. In the case of Texture, each class
contains 500 patterns.

Breast Diabetes
t Alg1 Alg2 Alg3 Alg4 Alg1 Alg2 Alg3 Alg4
0 92.54 92.54 92.54 92.54 66.67 66.67 70.24 68.45
1 94.03 94.03 94.03 94.03 66.07 66.07 70.24 69.05
2 94.03 94.03 94.03 94.03 66.07 68.45 69.64 69.64
3 94.03 94.03 94.03 94.03 66.07 69.64 67.86 69.64
4 95.52 94.03 92.54 95.52 65.48 69.05 67.26 69.64
5 95.52 94.03 92.54 95.52 65.48 69.05 67.86 69.64
6 95.52 94.03 92.54 95.52 66.07 69.64 67.86 69.64
7 95.52 95.52 94.03 95.52 66.67 70.24 67.86 70.24
8 95.52 95.52 94.03 95.52 67.26 70.83 67.86 70.83
9 67.26 68.45 66.67 70.24

1-NN 92.48 66.32

Table 2: Classification accuracies for Breast and Diabetes databases (1-NN indicates the classification accu-
racy when using the original TS without any editing).
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German Heart
t Alg1 Alg2 Alg3 Alg4 Alg1 Alg2 Alg3 Alg4
0 67.61 67.61 71.83 69.01 51.61 51.61 54.84 54.84
1 69.01 69.01 71.83 69.01 61.29 58.06 58.06 61.29
2 70.42 70.42 71.83 69.01 61.29 64.52 64.52 61.29
3 70.42 70.42 71.83 69.01 64.52 64.52 64.52 64.52
4 70.42 70.42 70.42 69.01 67.74 64.52 64.52 64.52
5 70.42 70.42 67.61 70.42 67.74 64.52 64.52 64.52
6 67.61 70.42 67.61 70.42 67.74 64.52 64.52 64.52
7 67.61 70.42 69.01 70.42 67.74 64.52 64.52 67.74
8 67.61 70.42 69.01 70.42
9 67.61 70.42 69.01 70.42
10 67.61 70.42 70.42 70.42
11 67.61 70.42 70.42 70.42
12 67.61 70.42 70.42 70.42

1-NN 65.81 53.33

Table 3: Classification accuracies for German and Heart databases (1-NN refers to the classification accuracy
when using the original TS without any editing).

Satimage Texture
t Alg1 Alg2 Alg3 Alg4 Alg1 Alg2 Alg3 Alg4
0 83.01 85.62 85.95 84.64 93.12 93.16 93.44 93.44
1 83.01 86.28 85.95 84.64 95.41 95.74 94.75 94.75
2 83.33 85.95 85.29 85.29 95.41 95.74 95.08 94.43
3 83.66 85.62 84.97 83.99 93.77 95.41 93.44 92.79
4 83.66 85.29 84.64 83.99 93.77 95.41 93.77 93.77
5 84.31 84.64 84.31 83.01 94.75 96.39 94.43 94.43
6 84.64 84.31 84.31 81.70 94.75 95.74 94.43 94.43
7 84.31 83.33 83.01 81.05 94.75 95.74 94.43 95.08
8 84.31 83.01 83.66 80.72 94.10 95.08 94.10 95.08
9 84.31 82.68 83.66 80.07 94.10 95.08 93.77 94.75
10 84.97 83.33 83.66 81.05 94.43 95.08 93.44 94.75
11 84.97 83.66 83.99 81.05 94.10 95.08 93.44 94.75
12 85.62 83.66 84.97 80.72 93.77 95.08 93.77 94.75
13 85.29 83.01 84.97 80.39 93.77 95.41 94.10 94.75
14 85.29 82.68 85.29 81.05 93.77 95.41 94.10 94.75
15 85.29 82.35 85.29 81.37 94.43 95.41 94.75 94.43
16 85.29 82.35 84.64 81.05
17 85.29 82.35 84.64 80.72

1-NN 81.01 91.74

Table 4: Classification accuracies for Satimage and Texture databases (1-NN is the classification accuracy
when using the original TS without any editing).


