ARTICULO

A new closure algorithm based in logic:
SL . -Closure versus classical closures.”

A. Mora, G. Aguilera, M. Enciso, P. Cordero, I.P. de Guzman

E.T.S.I. Informaética.
Universidad de Malaga
Campus de Teatinos s/n.
Malaga, 29071, Spain
formethis@ctima.uma.es

Resumen

The field of application of closure systems goes from theoretical areas as algebra or geometry to practical
areas as databases and artificial intelligence. In these practical areas, a kind of constraint named functional
dependencies have an important role. Given a set of attributes X and a set of functional dependencies
I', the computation of the closure of X for I', denoted as X is abundantly used in artificial intelligence
and database literature and is one of the key points in many problems: knowledge compilation, redundant
constraint elimination, query optimization, the finding key problem, etc. We outline the main classical closure
algorithms and we compare them with a novel algorithm named SL,. ,-Closure. We show an empirical study
with the execution of the closure algorithms, and we establish that SL, -Closure is the fastest.

Palabras clave: Closure, Logic, Functional Dependencies.

1 Introduction

We illustrate the background work related with
the constraint named functional dependency well
known in artificial intelligence (AI) and in rela-
tional database. In [17] the authors study a con-
densation knowledge procedure: “the knowledge
of functional dependencies in a theory may allow
to simplify the theory by eliminating those vari-
ables whose values are determined by the values
of other values”. When defining a database by us-
ing the relational model (see [26]), it is necessary
to establish a set of dependencies (constraints) to
represent data semantics.

Thalheim, in [29], states that, nowadays, there
exist more than 100 kinds of dependencies in the
literature on databases and he considers that, de-
spite the great number of existing publications on
this subject, there still is a lot to do.

Recently, there exists a wide range of problems
in database which are being treated successfully
with AI techniques.Thus, [7] pursue the integra-
tion between database and Al techniques, in [15]
non classical logics are applied to specification
and verification of programs, [28] shows the useful
characteristics of logic for Information Systems,
etc.

Moreover, in [14] the authors emphasize that the

*This paper has been partially supported by the Spanish project TIC03-8687-C02-01.

Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. No 31 (2006), pp. 31-40.
ISSN: 1137-3601. ©AEPIA (http://www.aepia.org/revista)

32

Inteligencia Artificial Vol. 10, N°31, 2006

solution to classical problems in database theory
can provide important support in underpinning
the reasoning and learning applications encoun-
tered in Al.

More recently, some authors have related func-
tional dependencies with emergent technologies.
Thus, the extension of functional dependencies
to XML has been studied in [2, 8, 19] and the
extraction of functional dependencies from large
databases has been performed using data mining
in [6, 21, 23].

Other authors remark in their works the impor-
tance of functional dependencies. Thus, in [6]
the authors mention the need to discover knowl-
edge which is latent in database relations and the
possibility of “checking dependencies and finding
keys for a conventional relation with a view to us-
ing the solution in general knowledge discovery”.
In [19] it is stated that “this constraint can help
users to identify semantically incorrect transfor-
mations”.

Now, we center our approach. In the literature of
AT and database appears a great amount of works
[16, 18, 32, 33] related with the implication prob-
lem. In order to solve this problem is common
to use the closure algorithm to obtain the closure
Xt of aset X w.rt. a set of functional depen-
dencies.

AsN. Caspard and B. Monjardet cite in [9]: “Clo-
sure systems or equivalently, closure operators
and full implicational systems appear in many
fields in pure or applied mathematics and com-
puter science”. In the paper the author enumer-
ates the great quantity of domains in which clo-
sure systems and closure operators are success-
fully applied: algebra, topology, geometry, logic,
combinatorics, computer science, data analysis,
knowledge structures, mathematics of social sci-
ence, etc.

In [24] we present a new closure algorithm named
SL, ,-Closure with the same complexity in the
worst case that the linear closure algorithms.
This algorithm applies the rules of SL,, logic
[11] and it has the same complexity of the classical
efficient closure algorithms. An FD logic is used
to develop an automated deduction method which
computes the closure operator. In this work, we
present a new version of the SL, -Closure algo-
rithm and we show an empirical study about the
new algorithm to check what is the faster closure
algorithm.

In section 2, we summarize the basic concepts for
functional dependencies and we remember what is
the implication problem for functional dependen-
cies. We outline the main strategies used in the
literature to improve closure algorithms in sec-
tion 3. We remark the novel closure algorithm in
section 4. In section 5, we present the empirical
study that we have developed and section 6 con-
tains the conclusions and outlines the actual and
future works. Section 7 show the algorithms that
we have implemented in C++ for the empirical
study.

2 Preliminaries

In this paper, we focus on functional dependen-
cies, introduced by E. F. Codd [10] in 1970.
Functional dependencies may be considered as
the reinforced structure of the building designed
by E.F. Codd: the database Relational Model.
They are used to determine good design crite-
ria (normalization theory), to enhance database
systems performance (query optimization), to de-
scribe and to infer data knowledge (data mining),
etc.

Definition 2.1 (Functional Dependency)

Let R be a relation over a set of attributes U .

o Any affirmation of the type X+—Y , where
X,Y C U, is named functional depen-
dency (henceforth FD) over R

e We say that R satisfies X—Y if, for all
t1,to € R, we have that:

t1)x = to/x implies that t,/y = to)y

When we introduce a relation, we must specify
the set of FDs that are satisfied by this relation.
Thus, we introduce the following definition:

Definition 2.2 (Relation Scheme) LetU be a
set of attributes. We say that S = (R,T') is a re-
lation scheme if R is a relation over U, T is a
set of FDs and R satisfies all ¢ € T'.

Delobel and Casey introduce in [12] a set of infer-
ence axioms and W. Armstrong in [3] proves that
these axioms are correct and complete.

Inteligencia Artificial Vol. 10, N°31, 2006

33

Proposition 2.3 (Armstrong’s Axioms) Let
X, Y, Z be arbitrary subsets of the set U of at-
tributes of a given relation R. We agree that XY
stands for the union of X and Y. The following
FD inference system is correct and complete:

1. If Y C X then X—Y. (Aziom)

2. If XY then XZ—Y Z. (Augmentation
Rule)

3. If XY, Y—Z then X—Z. (Transitivity
Rule)

We say that the set of FDs I' implies the FD
X—Y (' = X=Y) if for all relation scheme
S = (R,T), we have that R satisfies X+—Y. The
Armstrong’s Axioms allow us to find all depen-

dencies satisfied by a relational scheme S, i.e. to
find all the FDs X+—Y such as T = X—Y.

This concept is named in the literature as Arm-
strong’s relation and may be defined as the clo-
sure of a set the FDs in the following way:

Definition 2.4 (Closure of a FD set) Let

S = (R,T') be a relation scheme and I' C FDg
and X C U, we define the closure of the set of
FDsT as

I't = {X—Y € FDs |T = X+-Y}

The implication problem to obtain I' E X—Y
can be fulfilled if {X—Y} C I'". But, the
method to calculate I'" is a NP-algorithm. We
need another way to attach the problem.

The algorithms to manipulate FDs that appear
in the database literature utilize exhaustively the
closure operator of a set of attributes: Given X,
a subset of attributes included in an attributes set
U, and T C FDgs its closure for T', denoted X+,
is a new set containing all the attributes deduced
from X using Armstrong’s Azioms over I

Definition 2.5 (Closure of an attribute set)
Let S = (R,T) be a relation scheme andT' C FDg
and X CU, we define the closure of an attribute
set X as

XtT={AeU|X—AeT}

The following theorem, well established in the lit-
erature, reduce the implication problem to the

closure of an attribute set problem. Since there
exist several methods to compute X in linear
time, the implication problem may be solved with
linear cost.

Theorem 2.6 ' = XY ifY C XT.

In computer science, the calculation of X is pro-
fusely used in the database literature and is one
of the key points in many problems: redundant
dependency elimination, query optimization, the
finding key problem, etc. Specifically, the most
frequently used algorithms to transform relational
databases in more efficient ones, use exhaustively
the closure of a set of attributes (see[13, 22]).

Several algorithms are proposed in the database
literature to obtain the closure of a set of at-
tributes. The first linear algorithm is from Beery
and Bernstein in [5]. We have implemented in
C++, the most important algorithms that appear
in the literature.

3 Classical
rithms

closure algo-

A non linear closure algorithm for a set of at-
tributes appears in [20, 31] (see Algorithm 1).
Consider U to be a set of attributes and I' to be
a set of FDs, then its complexity is O(| U || T |?)
in the worst case. A complexity study of this al-
gorithm is available in [20].

Algorithm 1 Standard Closure

Input: u,r, Xcu
Output: X+
Begin
Xt=X
Repeat
For each A — B € T do
IfA C X* and B¢ X7 then
 Xt:=X* u {B}
End if
End for each
M no more attributes are added to X7
Return X7

End

34

Inteligencia Artificial Vol. 10, N°31, 2006

In the literature, there exist a set of works de-
voted to reduce the complexity of this algorithm,
because an efficient execution of it, is essential to
solve the implication problem.

In [5, 13, 26] several closures algorithms (algo-
rithms 3, 4, and 5 in our empirical study), all of
them with linear complexity, are presented. They
use some data structures to reduce the cost of
traversing the sets I' (FDs) and U (attributes),
decreasing the cost of the X computation. The
most common reduction strategies are the follow-

ing: !

(a) To use a set that keeps track of the at-
tributes that still have to be added to the
closure.

(b) To use an array indexed by the atomic at-
tributes A; that keeps track of the FDs that
have the attribute A; in the left hand side
of the FD.

(¢) To keep track of the number of attributes
belonging to the left-hand side for each FD
that are not jet in the closure.

We remark that the first linear-time membership
algorithm is presented in [5] by Beeri and Bern-
stein.

A detailed explanation of this algorithm appears
in the PhD Thesis of S. Torgersen [30]. Torg-
ersen cites the improvements presented for the
first time in [5]: “The naive approach would be
to find all dependencies with left-hand side con-
taining attributes that are in X. Then X is
augmented with the right-hand side attributes of
these dependencies and this containment search
is continued on the remaining dependencies until
no left-hand side contains X. The results will be
Xt

The great efficiency improvement of these algo-
rithms comes from the idea of adding the right
hand side of each FD once we have checked that
all their attributes are in the temporal closure. In
this way, the algorithms traverse the set of FDs
only once.

In the literature of AT and database, no closure al-
gorithms use directly a formal base (Armstrong’s
Axioms or an FD logic). Nevertheless, the use
of FDs in Al areas (data mining, rough set the-
ories, knowledge representation, etc.) requires

the development of automated deduction meth-
ods based on logic to manipulate FDs.

In the next section, we show a novel closure algo-
rithm based in logic that computes efficiently the
closure of a set of attributes.

4 The novel SL, -closure al-
gorithm

In [11] we have proposed a novel FD logic named
Substitution Logic for FDs (SL,.,) appropriated
to develop automated deduction methods. It is
guided by the idea of removing redundant at-
tributes in an efficient way. This is one of the
novelties of SL ., logic because other well-known
FD logic systems are guided by Armstrong Rela-
tions [3], more oriented to capture all the FDs
that can be deduced from a given set of FDs.

In [11] there also are several examples that show
how SL,, directly removes redundancy in a
set of FDs. In [25] we have developed a pre-
processing pruning to remove redundancy in a
FD set and we carry out an empirical study to
prove the practical benefits of this approach. We
remark that SL,., is an efficient tool and we have
shown the advantages of using a logic.

In [1] we prove that it is possible to use the
paradigm of rewriting system to remove redun-
dancy in FD sets and we use the Maude rewriting
language to translate directly the rules of SL,
and to use in an easy way these rules to remove
redundancy automatically.

As a direct application of SL,., in [24] we pro-
pose a framework to develop automated deduc-
tion methods for FDs. In this section, we show
the SL ., -Closure algorithm based in this frame-
work and we present an executable version of it
(see algorithm 2).

The soundness and completeness of this algo-
rithm are a direct consequence of the properties
of the SL,.,, presented in [11].

In the worst case, the Repeat loop (label I of the
algorithm) is executed at most | U | times, since
in every iteration at least one attribute is added
t0 Xpew. The Forloop (label 2 of the algorithm)

LA deeper explanation of the classical algorithms is behind the scope of the paper and may be easily obtained using the

references cited in the paper.

Inteligencia Artificial Vol. 10, N°31, 2006

35

is executed at most | I | times. Consequently,
the complexity of the algorithm is O(| U || T |).
Our algorithm has the same complexity (in the
worst case) as the previous algorithms cited in
the literature, namely linear with regard to the
input.

36

Inteligencia Artificial Vol. 10, N°31, 2006

Algorithm 2 Linear SL, ,-Closure.

Input

U: a set of attributes,
I': a set of FDs,

X: a subset of attributes

Output
XTt: the closure of X
Begin
Xnew = X
Xota = X
[1] Repeat [1]
Xotd = Xnew

[2] For each A — B € T' do [2]
If AC Xnew then
" Xnew := Xnew U B (Case I)
I'="I-— {A»—> B}
elsif BC Xnpew then

I =I-{A— B} (Case II)
else
r=r — {A— B} (Case III)
I'=T U {A-Xnew— B—Xnew} (Case III)
End if
End for each
Until ((Xnew = Xoa) or (|I'| = 0))
Return X+ = Xnew

End

We remark that in the application of the Case
I if AU X0, = @ and BU X6, = & then it
renders the same I'. In figure 1, this situation is
labelled as none.

Example 1 Let T' be the following set
of dependencies:{ag—h, h—cde, e—kl, ke—m,
fe—j, d—bei, joc,im—g} and let X = ad be
a set of attributes.

We apply the closure algorithm that renders
{Xnew : adbeiklmghe, f—j} and, therefore, the
closure of (ad) is (ad)™ = adbeiklmghc.

Figure 1 shows step by step the application of the
SL,, closure algorithm. By rows we depicted the
iterations of the Repeat loop. We also label each
FD with the applied Case (LILIII or none). We
put the symbol x, if the FD is removed from T.
Moreover, we illustrate the increase of the expres-

sion Xnew when Case I is applied.

In the following section, we compare our method
to the other algorithms. We remark that we don’t
use any data structure to summarize the informa-
tion of the FDs . We only use the rules of the
SL,, logic and we could improve the behavior
if we use the reduction strategies showed in the
section 3.

5 The design of the empirical
study

In this paper, we summarize the background
about closure algorithms and a new closure al-
gorithm with a formal base, the SL,, logic, is
showed. The complexity in the worst case is the
same as the classical linear closure algorithms.
Furthermore, in this work we have carried out an
empirical study about the execution time 2 of clo-
sure algorithms. To do so we have implemented
them using C*" in a Pentium 4 (1500 MHz, 512
MB of RAM, Windows 2000).

To improve random characteristics of the random
number generator used in the empirical study,
we have not used the usual random library of
C++ and we have implemented the algorithm
ran3. This algorithm is shown in [27] following
a Knuth’s suggestion and it is a portable routine
based on a subtractive method. We labelled the
algorithms that we have developed in C++:

Algorithm 2: Linear SL,, ,-Closure.

Algorithm 3: Beeri Linear Closure.

Algorithm 4: Diederich Linear Closure.

Algorithm 5: Paredaens Linear Closure.

2Tn [33] the author remark that ‘the execution time are mostly relevant for comparing algorithms’.

Inteligencia Artificial Vol. 10, N°31, 2006 37

r ag—h h—cde e—kl ke—m fe—j d—bei jc imr—g
Xnew : ad adbei
Case : (III) (III) none none none) none (I11)

I’ g—h hi—ce er—kl ke—m fo—j X jrc m—g
Xnew : adbei adbeikl adbeiklm adbeiklmg
Case : (III) (II1)) I none none)

I g—h h—c X X fe—j e X
Xnew © | adbeiklmg | adbeiklmgh adbeiklmghc
Case : Q8] @8] (111) (IT)

I X X fr=i X

Figure 1: Example 1

In order to have another criterion measure, we use
another parameter defined in [4, 33]. The authors
define the size of a FD set as follows:

Definition 5.1 Let be T' = {Xij—Y1, ...,
X,—Y,} a set of FDs, we define the size of T
as || T [=20 (| Xa | +1Yi) %

We randomly generate a set of attributes U, a set
of FDs T, and a subset of attributes X C U and
we apply the closure computing methods.

The software renders four data: the cardinality
of the random FD set, the size of the random FD
set, the execution time of the closure algorithms
in the order detailed previously.

In this study, we have executed the closure algo-
rithms 1.817 times. We have generated FD sets
with 25, 50,75,100,125,150,175 and 200 FDs. And
for each FD set with N FDs, we have repeated the
execution of the algorithms varying the maximum
number of attributes in the left-hand side and in
the right-hand side, from 1 to 300. The range
in the size of the FD sets has varied from 50 to
61770 attributes.

We have calculated the average of the 1.817 exe-
cutions and the results are in the following table:

Method average median

Diederich Closure 4.593,48 1.001,50

Beeri Closure 7.013,56 4.139,33

Paredaens Closure 5.863,35 1.643,00

SL,.,-Closure 1.262,41 230,00
Table 1

SL, ,-Closure has had a significatively better be-

3Where | X | is the cardinality of the set X.

havior than other linear closures. SL, ,-Closure
has not only spent less time than the other al-
gorithms but also has a narrow 95 % confidence
interval on the mean that is strictly under the
confidence intervals of the others. It can be seen
in the following figure.

5.000—

E

5.000

4.0004

95% IC

2.000

Figure 2. Empirical study

38

Inteligencia Artificial Vol. 10, N°31, 2006

6 Conclusions and future
works

In this paper, most important closure algorithms
have been studied. We have selected for compar-
ing some of them that has the lower complexity,
that is linear complexity.

Algorithm SL, ,-Closure is described as a direct
application of the rules of the SL,, logic. Its
complexity in the worst case is also linear.

An empirical study has been carried on. This
study has compared the time spent for each clo-
sure algorithm in 1.817 FD sets with different car-
dinality (from 25 to 200 FDs) and different size
(from 50 to 61770 attributes).

SL, ,-Closure Algorithm has spent significatively
less time than the other linear closure algorithms.

Actually, we work in the use the of SL,, ,-Closure
algorithm to improve the pre-processing transfor-
mation algorithm that we use in [25] to obtain
the canonical closure of a set of FDs.

A future work will be the study of the behavior of
closure algorithms with respect to different pat-
terns of FD sets.

Also, we are applying Al techniques in database.
We have developed a CASE tool to design col-
laborative database. In a collaborative environ-
ment, it is necessary to make the integration of
the different users schemes and to summarize all
the information in a unique and unified system.
The goal is to integrate all the information in a
global model without the existence of redundances
and inconsistences and to answer the users global
queries searching the data in the heterogeneous
and probably disperse data sources.

We propose the use of the SL ., logic to carry out
the integration process using an intelligent deduc-
tion method. And we will use SL,,,-Closure to
optimize query in the unified data model.

7 Annex

In all algorithms the input is U a set of attributes,
I' a set of FDs and X C U/ and subset of at-
tributes. The output is the closure of X denoted
by XT.

Algorithm 3 Beeri Linear Closure.

Input: u, r, xcu
Output: X+
Begin
For i=1 to n do
AttrList[i] = NIL
For j=1 tom do
If Ay € FDj.lhs then
AttrList[i] = AttrList[i] U {j}
End if
End for
End for
For 31 to m do
Counter[j] =|| FDj.lhs || then
End for

X+, AddedAttr = X
While (AddedAttr # @) do
AddedAttr = AddedAttr — A;
For each FD; € AttrList[i] do
Counter[j] = Counter[j] — 1
If Counter[j] =0 then
AddedAttr = AddedAttrU (FDj.rhs—X7T)
Xt =X* U FDj.rhs
End if
End for each
End while
Return X T

This algorithm use the following strategies to im-
prove the complexity:

e The authors use Counter[j] to store is the
number of attributes in F'D;.lhs not in X .

e The authors use AddedAttr to store a sub-
set of Closure where each element is added
exactly once.

e The authors use AttrList[i] to store a list
of FDs whose left sides contain A;.

AlgOI‘ithm 4 Diederich Linear Closure

Input: U, T, XC U

Output: X+
Begin
Xti=X

UPDATE := X
For each A— B do
COUNT[A— B]:=| A|
End for each
For each attribute A;
Construct LIST[A;]
End for each
While UPDATE is not empty
select and remove an attribute
A; from UPDATE
For each A— B € LIST[A;] do
decrement COUNT[A— B]
If COUNT[A— B] =0 then
add B to UPDATE and XV
if B is not already in X T
End if
End for each
End while
Return X 7T

Inteligencia Artificial Vol. 10, N°31, 2006

39

The great efficiency improvement of this algo-
rithm comes from the idea of adding the right
hand side of each FD once we have checked that
all their attributes are in the temporal closure.
In this way, the algorithm traverses the set of FD
only once.

The Algorithm 4 use the following strategies to
improve the complexity of the closure algorithm:

e The authors use COUNT|[A—B] to store
the number of attributes in the left-hand
side.

e The authors use LIST[A;] to store a list of
pointers to dependencies in which A; € A.

Algorithm 5 Paredaens Linear Closure.

Input: U, T, XC U
Output: X+
Begin
Xt =g
XWAIT =X
For each X — Y € T do
NOTIN(X— Y) =] X |
If X = O then
T XWAIT = XWAIY U Y
End if
For each A € X do
INLFD[A] = INLFD[A]U{X~ Y}
End for each
End for each
While XWAIT # &
For each A, € XWAIT do
XWAIT = XWAIT — {Ay}
Xt =Xt u {A;}
For each X — Y € INLFD(Ay) do
NOTIN(X+— Y)=NOTIN(X+— Y)—1
If NOTIN(X+— Y) =0 then
XWAIT = XWAIT U {Y -XT}

End if
End for each
End for each
End while
Return X T

In [26] Paredaens et. al show that the complexity
of these algorithm is O(] U || T |). Also, they
mention that “in the literature O(| U || T |) is
usually considered as the order of the input. From
this point of view, this is a linear time algorithm
for the computation of the closure of a set of at-
tributes”.

Paredaens et al. [26] apply some of the previ-
ous strategies to improve the complexity of the
closure algorithm:

e The authors use NOTIN[X+—Y] to store
the number of attributes in the left-hand
side.

e The authors use INLF D[A] a list of point-
ers to dependencies in which 4; € A.

References

[1] Gabriel Aguilera, Pablo Cordero, Manuel
Enciso, Angel Mora, and I. P. de Guzman.
A non-explosive treatment of Functional de-
pendencies using rewriting logic. LNAT 8171,
Springer-Verlag (SBIA 2004), pages 31-40,
2004.

[2] Marcelo Arenas and Leonid Libkin. An
information-theoretic approach to normal
forms for relational and xml data. In
PODS,San Diego, CA, USA, 2003.

[3] William W. Armstrong. Dependency struc-
tures of data base relationships. Proc. IFIP
Congress. North Holland, Amsterdam, pages
580-583, 1974.

[4] Paolo Atzeni and Valeria De Antonellis. Re-
lational Database Theory. FEd. The Ben-
jamin/Cummings Publishing Company Inc.,
1993.

[5] C. Beeriand P. A. Bernstein. Computational
Problems related to the design of normal
form relational schemas. ACM Transactions
on Database Systems, 4 (1):30-59, 1979.

[6] D. A. Bell. From data properties to evidence.
IEEFE Transactions on Knowledge and Data
Engireering, 5 (6):965-968, 1993.

[7] Elisa Bertino, Barbara Catania, and
Gian Piero Zarri. Intelligent database
systems. FEd. ACM Press. Addison-Wesley,
2001.

[8] P. Buneman, S. Davidson, W. Fan, C. Hara,
and W. Tan. Reasoning about keys for xml.
Draft manuscript, 2000.

[9] Nathalie Caspard and Bernard Monjardet.
The lattices of closure systems, closure oper-
ators, and implicational systems on a finite
set: a survey. Discrete Applied Mathematics,
127 (2):241-269, 2003.

[10] Edgar F. Codd. A relational model of data
for large share data banks. Comm. ACM, 13
(6):377-387, 1970.

40

Inteligencia Artificial Vol. 10, N°31, 2006

[11]

[12]

[17]

[18]

Pablo Cordero, Manuel Enciso, I. P. de
Guzman, and Angel Mora. SLFD logic:
Elimination of data redundancy in knowl-
edge representation. LNAI 2527, Springer-
Verlag (IBERAMIA 2002), pages 141-150,
2002.

C. Delobel and R.G. Casey. Decomposition
of a data base and the theory of boolean
switching functions. IBM J. of Research and
Development, 17 (5), 1973.

Jim Diederich and Jack Milton. New meth-
ods and fast algorithms for database normal-
ization. ACM Transactions on Database Sys-
tems, 13 (3):339-365, 1988.

J. W. Guan and D. A. Bell. Rough computa-
tional methods for information systems. Ar-
tificial Intelligence, 105 1 (2):77-103, 1998.

Erika Hajnicz. Time structures. Formal
description and algorithmic representation.
LNAI 1047, Springer-Verlag, 1996.

S. Hartmann and S. Link. The implica-
tion problem of functional dependencies in
complex-value databases. FElectronic Notes
in Theoretical Computer Science, 123:125—
137, 2005.

Toshihide Ibaraki, Alexander Kogan, and
Kazuhisa Makino. Functional dependencies
in Horn Theories. Artificial Intelligence, 108
1-2:1-30, 1999.

M. Kirchberg and S. Link. On the im-
plication problem for functional dependen-
cies in the higher-order entity-relationship
model. CRPITS’17: Proceedings of the
Fourteenth Australasian database conference
on Database technologies 2003, pages 115—
124, 2003.

M. L. Lee, T. W. Ling, and W. L. Low.
Designing functional dependencies for xml.
LNCS, Springer-Verlag, 2287:124-141, 2002.

David Maier. The theory of relational
databases. Computer Science Press, 1983.

H. Mannila. Methods and problems in data
mining. Proceedings of International Con-
ference on Database Theory. Afrati, Kolaitis

(ed.), 17 (2), 1997.

H. Mannila and K. Raiha. Design of rela-
tional databases. Fd. AddisonWesley, Read-
ing, MA, 1992.

[23]

[25]

[27]

[28]

[30]

[31]

[32]

H. Mannila and K. Raiha. Algorithms for
inferring functional dependencies from rela-
tions. Data and Knowledge Engineering, 12
(1):83-99, 1994.

Angel Mora, Manuel Enciso, Pablo Cordero,
Gabriel Aguilera, and I.P.de Guzmén. Clo-
sure via functional dependence simplifica-
tion. Submitted to Acta Informatica, 2005.

Angel Mora, Manuel Enciso, Pablo Cordero,
and Inmaculada P. de Guzméan. An efficient
preprocessing transformation for functional
dependencies sets based on the substitution
paradigm. LNAI, Springer-Verlag (CAEPIA
2003), 3040, 2004.

Jan Paredaens, Paul De Bra, Marc Gyssens,
and Dirk Van Van Gucht. The structure
of the relational database model. EATCS
Monographs on Theoretical Computer Sci-
ence. Ed. Springer-Verlag New York, Inc.,
1989.

William H. Press and et al. Numerical
recipes in C. The art of Scientific Comput-
ing. ed. Cambridge University Press. 1999.

David Robertson and Jaum Agusti.
Lightweight uses of logic in conceptual
modelling. Software Blueprints. ACM
Press. Ed. Addison Wesley, 1999.

Bernhard Thalheim. An overview on seman-
tical constraints for database models. 6th
International Conference, Intellectual Sys-
tems and Computer Science. Moscow, Rus-
sia., 1996.

Solveig Torgersen. Automatic design of re-
lational databases. Ph. D. Thesis. TR 89-
1038. Cornell University, Ithaca, 1989.

Jeffrey D. Ullman. Principles of database
systems. Computer Science Press, 1982.

Lin Lin Wang. Thorough investigations into :
An improved algorithm based on subset clo-
sures for synthesizing a relational database
cheme. IEEFE Transactions On Software En-
gineering, 22 (4):271-274, 1996.

Marcel Wild. Computations with finite clo-
sure systems and implications. Computing
and Combinatorics. LNCS 959. Springer,
Berlin-Heidelberg, pages 111-120, 1995.

