
ÁAAAAAAAAAAAAAAAAAAAAAAAÁAAAAAAAAAAAAAAAAAAAAAAAARTÍCULO

Multi-agent Platform for Distributed Soft Computing

Piotr Biegański, Aleksander Byrski, Marek Kisiel-Dorohinicki

Department of Computer Science

AGH University of Science and Technology

Mickiewicz Avn. 30

30-059 Kraków

piotr.bieganski@gmail.com, {olekb,doroh}@agh.edu.pl

Abstract

This paper presents an approach to construct efficient and extensible multi-agent platform for distributed soft
computing. Various software engineering techniques are employed to implement reliable and reusable system
architecture. Extensible XML based configuration is used to simplify the process of repetitive simulations
performed with use of constructed toolkit. The general purpose of the idea is applied to the construction of
evolutionary multi-agent computational system.

Keywords: Multi-agent systems, soft-computing, function optimization.

1 Introduction

Soft computing techniques, such as evolutionary
algorithms, artificial neural networks, or fuzzy
systems, have attracted growing interest during
the last decade. A prominent role in the research
in the field play hybrid systems—based on com-
bining different ideas and methods—that by the
effect of synergy are often said to exhibit some
kind of intelligent behaviour [?]. This is some-
times called computational intelligence (CI) as
opposed to rather symbolic artificial intelligence.

Such systems are used today for more and more
complex problems requiring processing of huge
amounts of data and long computational time.
Parallel and distributed implementations seem to
be a promising answer to this problem, especially
that many techniques (such as evolutionary com-
putation or ant colony optimisation) are highly
parallel by nature. What is more, it turns out
that their population-structured models are often
able to provide even better solutions than com-

parably sized classical ones—considering not only
the quality of obtained solutions and convergence
rate, but first of all a global convergence reliabil-
ity. As a typical example of such approach, de-
composition (fine- and coarse-grained) models of
parallel evolutionary algorithms may be recalled
here, as they have been successfully used in a
number of applications [?].

The idea of building such systems can be essen-
tially ordered and enriched using the notion of
an intelligent agent—a software entity situated in
some environment and autonomously acting on it
so as to satisfy its own goals. A multi-agent sys-
tem (MAS) is designed and implemented as a set
of interacting agents and the interactions cooper-

ation, coordination or negotiation turn out to be
the most characteristic and powerful component
of the paradigm [?]. Conceptual relation between
particular soft computing techniques and agents
or their populations forms a base for distinguish-
ing various levels of architectural design. It can
be foreseen that the proposed approach can not
only give a universal platform for cooperation of

Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. Vol. 9 No 28 (2005), pp. 63-70.
ISSN: 1137-3601. c©AEPIA (http://www.aepia.org)

64 Inteligencia Artificial Vol. 9 No 28 (2005)

different known methods but also magnify their
solving abilities up to gaining computational in-

telligence at a level of agent populations [?].

Nevertheless considering the complexity of these
systems, a serious need arises to create flexible
and extensible, yet well-structured management
scheme that will help to create reliable and scal-
able distributed environments. In the paper a
platform that supports a processor-based man-
agement scheme is described. The scheme allows
for the definiton of workflows in terms of coop-
erating software components that constitute the
computational units (agents) of the system.

The paper is organized as follows. Section 2 gives
fundamental assumptions and identifies core fun-
tionalities of the system. In section 3 the pro-
posed architecture is discussed in depth. Selected
implementation details conclude the work in sec-
tion 4.

2 Needs and expectations

The primary goal of the platform design is to re-
lieve the developer from implementing majority
of the functionality not related to the problem to
be solved. This entails specific expectations that
cover three aspects of the system:

Problem issues – problem-dependent require-
ments that must be fulfilled by the sys-
tem – e.g. the possibility of introducing
ordered graph of connections between com-
putational nodes (virtual computing nodes
corresponding to the evolutionary islands
from the multiple-deme evolutionary com-
putation model, on every physical com-
puter, one or more computing nodes may
be present), or the components support-
ing specific operations (e.g. evolutionary
ones, such as crossover, mutation, migra-
tion etc.).

Technological issues – based on specific tech-
nology (such as MPI, PVM e.a.) devoted
to support communication in a distrib-
uted environment among many computa-
tional nodes, concurrent computation and
reusable component-based structure of the
system.

Management issues – including dynamic re-
configurability, on-line monitoring, easy
management of the whole system.

Problem presumptions

The constructed distributed environment consists
of one or more locations representing regions con-
taining local populations of the individuals. Each
location usually provides specific management
procedure (e.g. evolutionary or ant colony com-
putation) and may be implemented at will. Such
a decomposition approach makes possible to per-
form problem processing in distributed network.
Additionally it is allowed to define topology of re-
gion connections in the form of directed graph,
specifying any neighbourhood relation.

Considering flexibility of the system, which
should perform many different operations on
groups of agents (populations) contained in the
locations, the system should provide the devel-
oper with many different components (proces-
sors) that may ease the changes introduced into
the populations. Considering evolutionary sys-
tem, such operators may perform functions of
crossover, mutation, preselection e.a. In fact the
implementation of these processors may vary de-
pending on the specific application issues (such
as genotype representation in evolutionary com-
putation).

Technological presumptions

The designed software platform should allow for
concurrent computation and asynchronous com-

munication among the processes in the system.
In order to simplify the implementation process
and efficiency of the whole solution, apart from
parallelisation, event-driven simulation is consid-
ered. I.e. some parts of the system are re-
alised as parallel tasks (processes or threads), and
run concurrently on a multi-processor machine,
while other parts of the system may undergone
an event-driven simulation: entities are activated
one by one, or wait for their activation in a queue.

Usually the parallel processes are used to imple-
ment locations [?] and inter-location communi-

cation, while the event-driven simulation used in-
side every process, in order to support the agents’
behavior and intra-location communication (ap-
plication of the whole system to the problem
of evolutionary computation leads to considering
agents as individuals, locations as demes, and the

Inteligencia Artificial Vol. 9 No 28 (2005) 65

whole system as multiple-deme distributed envi-
ronment).

The system should be constructed in such way
that the consecutive steps of creating of the sys-
tem should to a great extent rely on the reusable

predefined components. It should allow for quick
adaptation of the new programmer to the spe-
cific features of the platform, and limit the cost
of debugging. The design patterns should become
especially useful for implementing such a complex
system.

Management presumptions

Considering soft-computing purposes, it is usu-
ally needed to perform parametric tuning of the
simulation, e.g. looking for the good solution
of the given problem, that is strictly dependent
on the specific parameters of the simulation. To
achieve this, one must perform sequence of similar
tests with different sets of parameter values. Note
that the parameter of algorithm may be even a
proper implementation of some subroutine.

Automatic testing all possible variants should
become one of the main objectives of the con-
structed platform. It is required to allow to spec-
ify ranges of values or possible implementation
variants in the configuration. To perform all tests
it is required to automatically iterate through all
possible configuration versions during runtime.
Another important idea is the way of specifying

global meta-configuration, describing all possible
variants, and mechanism of successive and auto-
matic variant distribution.

The ability of seamless reconfiguration of the
whole system is crucial for the simulation prob-
lems, where the work of the system is dependent
on the set of parameters, and optimal parameter
configuration leading to obtaining optimal solu-
tion needs usually many simulation with differ-
ent parameters to be run. The configuration of
the platform should also be extensible, in order to
adapt to the changes of the user’s requirements.
In fact, user should be able to easily influence pa-
rameters of the simulation, as well as the simula-
tion algorithm. Thinking of the technology used
as a base for this kind of configuration, the use of
XML should be considered, because of the popu-
larity of this standard.

Complex simulation or computing systems may
produce lot of more or less important results.
Some of the data should be kept for future analy-
sis, but some should be verified as fast as possi-
ble. Unfortunately, usual practice of the moni-
toring consists in simply logging the results into
files or databases, so it is impossible to perform
automatic interpretation, without the interaction
with user. An useful idea should be to make pos-
sible on-line monitoring of the specific simulation
parameters at runtime. Collecting statistics and
results should be entrusted to a separated net-
work module, so it does not interfere with the
computational procedures.

66 Inteligencia Artificial Vol. 9 No 28 (2005)

��������������	������

Fig. 1. Distributed structure of the system

3 System architecture

Each role in the platform is represented by a sep-
arate module, working at the node of specific type
(fig. 1.):

Managing node controls the whole comput-
ing environment, contains locations registry

and node manager which are responsible for
different aspects of distributed system man-
agement:

• Location registry determines the en-
vironment topology using neighbour-
hood relation.

• Node manager globally controls the
stopping condition, delivers local con-
figurations, and collects final results.

Processing nodes perform the computation.
Each node may run its own location, and
may obtain a list of neighbour locations
from the location registry to communicate
with them.

Observing node is not directly involved in the
computation. Statistics storage collects lots
of data about the computation: the results
of processing cycles, states of consecutive

populations, and other factors, like effects
of mutation, migration, etc.

Node manager is responsible for the management
of the distributed system. It is placed in the
administration node and communicates with the
distributed nodes which are situated in the com-
putation nodes, being the interface for the distrib-
uted computation. One of the most important
functions of the node manager is the handling
of the system’s meta-configuration, which may
be perceived as a skeleton for the specific con-
figuration of the computation nodes. Using the
meta-configuration information, consecutive ver-
sions of node configuration are generated, which
differ only by certain features (e.g. values of some
parameters). Node manager performs following
services for the computation node:

• provides computation node with specific
configuration,

• controls the stop condition of the computa-
tion,

• synchronizes work of the computation node.

Node manager stores in every step of the work
the best solution of the given problem found in
the nodes it manages.

Inteligencia Artificial Vol. 9 No 28 (2005) 67

Each computing node is placed on a separate ma-
chine, and works as the slave subsystem for the
node manager. In this case it accepts consecu-
tive variants of configuration sent by the manager
and runs proper computing routines (for exam-
ple an evolutionary procedure). It is possible to
perform computations in synchronized and non-
synchronized mode, or even to omit the manager
and define the whole procedure in the configura-
tion of computing node.

Remote locations are situated in the computing
nodes, they provide specific interface for commu-
nication and migration of the agents among the
locations. The process of agent-migration in the
described system is realized using simple data-
migration technique – the agent that should mi-
grate is removed from the one of the comput-
ing nodes and is recreated on the other comput-
ing node using specific information describing its
state. Remote locations are managed using the
locations registry.

Location registry is placed in the administration

node, along with the node manager, and is used
for system initialization (remote locations have to
localize themselves in the network environment
before beginning of the computation) and coor-
dination of the whole system. Location registry
performs following functions:

• allows for registering and unregistering of
distributed locations,

• provides locations with information about
its neighbours (newly appearing and being
removed ones),

• notices certain locations about new loca-
tions appearing in the system,

• performs logging of the communication er-
ror messages between locations,

• removes non-working (lost) locations from
the environment.

Information may be exchanged at several stages
of the location’s algorithm. Especially the mi-
gration may be realized by the main procedure
of the computing node, or it may be the part
of evolutionary procedure. The aspect of agents
may provide delegation of the decision authority
to the individual, therefore the decision-making
procedure will be invoked during the process of
evolution, which is an independent enditity – as
described above. This requires communication

support for the developer, offered in library as
the processing module.

The communication between locations is possi-
ble since the location programs becomes visible
to each other. This is usually realized using some
form of net addresses, delivered with broadcast
messages or by the managing module. For lot of
systems it may be assumed that the communica-
tion must not be chaotic. Therefore the second
solution gains much more sense after introducing
concept of environment topology.

Specifying topology implies definition of some
contiguity relation between locations and requires
the location registry program to manage the en-
vironment, delivering selected net addresses to
properly set up locations.

Architecture of the processing node

The management procedure of the computation
node depends on the chosen mode of distributed
processing. It may be easy changed by replacing
configuration file. The procedure obtains config-
uration variants from the remote node manager
and performs computations, cyclically verifying
global stop condition, controlled by the manager.

Except for the distributed communication, archi-
tecture of processing node strongly depends on
the application of introduced system.

The shape of evolution process is provided as a
part of configuration of location program. It indi-
cates that contents of the procedure, their num-
ber, order and allowable parameters cannot be
foreseen. The only thing predictable is that an
input and output of the whole evolutionary mech-
anism is the population. Therefore the simplest
soluition allowing to create flexible platform is to
define adequate interface of population processor,
and to leave implementation to the developer.

While the procedure can be seen as the popula-
tion processor, its ingredients may also be repre-
sented as the chain of such processors, performing
successive steps of the algorithm.

For the case of more complex flowchart, where:

• some subroutines have to invoked condi-
tionally,

• population must be split into parts and ser-
viced by different processors,

68 Inteligencia Artificial Vol. 9 No 28 (2005)

• different kinds of data must be processed by
specialized subroutines,

it is required to specify hierarchical organization
of structure and to define specialized interfaces
(fig. 2.).

The complex algorithm is divided into consecu-
tive steps, and these steps are implemented inside
the specific processor components. Each proces-
sor is capable of transforming the whole popula-
tion, and the sequence of processors is used to im-

plement complex transformations (e.g. in evolu-
tionary systems, processors may be used to imple-
ment different phases of evolutionary algorithm –
preselection, mutation, recombination e.a.).

The processors may be used to transform the
whole population of the individuals (e.g. popu-
lation provider used to initialize the population),
the specific group of the individuals (e.g. recom-
bination processor used to create new individuals
using the genotypes of its parents) and single in-
dividual (e.g. mutation processor used to perturb
the genotype of the newly created individual).

Fig. 2. Evolutionary routine of processing node

Finally the evolutionary procedure is the form
of functional language, representing hierarchical
structure of processing objects, obtaining some
parameters and subsequent parts of the hierar-
chy. This can be easily described using the XML
syntax.

As long as sets of functions are represented by
interfaces, it is possible for developer to design
his own solutions or to use some offered by the
platform library.

4 Selected implementation

issues

The platform comes as a library of modules im-
plemented with the use of Java technology, RMI-
based remote communication, and a set of ex-
ternal libraries (log4j for the purpose of logging,
dom4j to deal with XML parsing, and JFreeChart

Inteligencia Artificial Vol. 9 No 28 (2005) 69

for the statistics module). To implement the com-
plete system it is required compose predefined
and user-defined components, preparing appro-
priate configuration files. The implementation
methodology may be expressed by the following
construction layers:

• a set of well-defined interfaces describes as-
sumptions for main program units and in-
ternal modules,

• a set of executable units must conform to
the requirements of the distributed archi-
tecture,

• a library of predefined, universal or spe-
cialized implementations, also for specific
classes of systems (for example evolution-
ary systems),

• the configuration defines rules of coupling
and setting up all required objects.

These layers form a base for reuse and extensibil-
ity of the platform—most of the functionality in
the system is represented by (as many as possi-
ble independent) interfaces, and the selection of
adequate objects and establishment of object con-
nections is left for the configuration level.

To speed up the development of particular ap-
plications the implementation is based on well-
known design patterns. High flexibility was
achieved thanks to use of façades and mediators,
with indicated profits of encapsulation provided
by interfaces and employment of decorators. Fac-

tories support substitutability of families of inter-
acting objects related to particular solving meth-
ods or particular problems. The control flow of
the main management routines is defined in terms
of state machines, while the computing routine
utilises a composite of processors. Many of them
are realisations of interpreter or strategy patterns.
More detailed description of the core structures
follows:

Factories. The main routine of the solving (e.g.
evolutionary) subsystem is assumed to work
aside from the solved problem. Inside the
routine there may be lots of objects cre-
ated: agents, evaluation results, decisions,
etc., which are strongly irrespective of the
determined control flow. In order to allow
creation of objects of unspecified shape, the
solving procedure widely uses Polymorphic

factories and Abstract factories.

Fig. 3. The problem described with

three factories for the evolutionary

procedure

Application of factories allows to sepa-
rate implementation of computational parts
from the details of the problem to be solved.
All problem-dependent entities are created
with specified factory, yet used through in-
terfaces during the processing, like an in-
dividual’s genotype or an individual itself
in evolutionary computation (fig. 3.). By
providing factory interfaces the platform
transfers some reponsibility to the devel-
oper, but such an approach brings lots of
profits. Not only existing solutions may be
easily adopted by implementing proper in-
terfaces, but also even ready systems still
remain flexible and provide extendable and
reusable modules.

Composition. For easy setup and modification
of the routine of computation the compos-

ite pattern was used, imposing a common
interface of processors. Processors may per-
form some computation on the acquired
data, or control the flow of data, passing it
to other processors to perform their jobs.
The reconfiguration of the solving proce-
dure is thus possible without recompilation
of the code, just by modifying the config-
uration. Thanks to the common interface,
processors may be relocated without watch-
ing out if one may be really connected to
another.

Thanks to loose coupling it is easy to replace
almost any part of the system with a more appro-
priate implementation. This concerns the com-
puting node module, which may be substituted
by any agent able to read manager’s requests
and perform any actions to produce the result
to be sent back. Another example is the statis-
tics storage, already implemented in two ways: as
a dummy module, and as the persistent storage
providing visualisation.

70 Inteligencia Artificial Vol. 9 No 28 (2005)

 PopulationProcessingException(in Throwable)
 PopulationProcessingException(in String)
 PopulationProcessingException(in String, in Throwable)

PopulationProcessingException

SimpleCrossoverProcessor

GeneticProcessor

 AbstractPopulationProcessor(in Collection)

 AbstractPopulationProcessor(in Configuration)
 getChildProcessors(): List
 hasChildProcessors(): boolean
 mergeResults(in AgentMagazine, in Population): void

 processChildren(in Population): Population

AbstractPopulationProcessor

PassProcessor

CrossoverProcessor

 process(in Population): Population

«interface»
PopulationProcessor

KillProcessor

TimeTickProcessor UniversalSelection

MutationProcessor

DecisionInterpreter ExchangeProcessor

Fig. 4. Numerous population processors based on the same skeleton

The purpose of the library of ready solutions
is to provide reusable components required to
introduce many solving algorithms and several
kinds of distributed porcessing schemes, that have
been designed as possibly abstract interfaces. Of-
ten some skeleton implementations were addition-
ally proposed (see e.g. fig. 4.).

5 Concluding remarks

In the paper, the idea and specific demands of
the distributed soft-computing platform were pre-
sented. Trying to fullfil design presumptions that
were posed in the beginning, a system was imple-
mented using Java technology. The main effort
was put on the reusability and reconfigurability
of the system, in order to simplify the process
of development. Additionally complex user in-
terface including the ability of on-line monitoring
of the certain system activity was implemented.
The whole system may be succesfully used to con-
struct complex soft-computing solutions, such as
systems based on the evolutionary agent compu-
tation paradigm.

References

[1] P. Bonissone. Soft computing: the conver-
gence of emerging reasoning technologies. Soft
Computing, 1(1):6–18, 1997.

[2] A. Byrski, L. Siwik, and M. Kisiel-
Dorohinicki. Designing population-structured
evolutionary computation systems. In T. Bur-
czyński, W. Cholewa, and W. Moczulski, edi-
tors, AI-METH2003 Methods of Artificial In-
telligence. Dept. for Strength of Materials
and Computational Mechanics, Dept. of Fun-
dametals of Machinery Design, Silesian Uni-
versity of Technology, Gliwice, 2002.

[3] E. Cantú-Paz. A summary of research on par-
allel genetic algorithms. IlliGAL Report No.
95007. University of Illinois, 1995.

[4] J. Ferber. Multi-Agent Systems. An Intro-
duction to Distributed Artificial Intelligence.
Addison-Wesley, 1999.

[5] M. Kisiel-Dorohinicki, G. Dobrowolski, and
E. Nawarecki. Agent populations as compu-
tational intelligence. In L. Rutkowski and
J. Kacprzyk, editors, Neural Networks and
Soft Computing, Advances in Soft Comput-
ing, pages 608–613. Physica-Verlag, 2003.

