
Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. No.24 (2004), pp. 55-65.
ISSN: 1137-3601. © AEPIA (http://www.aepia.dsic.upv.es/).

ARTÍCULO

Towards a Peer-to-Peer Object Middleware for Wide-Area
Collaborative Application Development

Carles Pairot, Pedro García, Rubén Mondéjar

Departamento de Ingeniería Informática y Matemáticas
Universitat Rovira i Virgili

Avinguda dels Països Catalans, 26
Tarragona, 43007

{cpairot, pgarcia}@etse.urv.es

Antonio F. Gómez Skarmeta

Departamento de Ingeniería de la Información y las Comunicaciones
Universidad de Murcia

Apartado 4021
Murcia, 30001

skarmeta@dif.um.es

Abstract

In this paper we present DERMI, a decentralized wide-area event-based object middleware built on top of a
peer-to-peer substrate. Its main building block is the underlying publish/subscribe event notification system
provided by the peer-to-peer layer. By using this methodology, innovative benefits like object mobility and
discovery, object replication and caching, distributed interception, high performance
synchronous/asynchronous one-to-one/one-to-many notifications and decentralized object location services are
provided. Moreover, new programming abstractions (anycall and manycall) are introduced, which allow the
programmer to make calls to groups of objects without taking care of which of them responds until a
determinate condition is met. We believe that such middleware is a solid building block for future wide-area
collaborative applications.

Keywords: Wide-area event-based middleware, distributed objects, peer-to-peer overlay networks, collaborative
applications.

1. Introduction

Over the years, the Internet network has been
growing steadily in number of users and nowadays
its ubiquitous nature is well-assumed by everybody.

1 Los tipos Times y Times NewRoman se asumen equivalentes

Network bandwidth has increased considerably and
the rising of many successful wide-area applications
have made it become more and more popular. Apart
from network bandwidth itself, computers every day
have more overall capacity and its resource sharing
capabilities become more and more important.

56 Inteligencia Artificial V. 8, Nº 24, 2004

Most organizations have a wide variety of
heterogeneous hardware systems which run
different operating systems and rely on different
network architectures. As a result, integration and
development of distributed applications is difficult.
Middleware systems appeared to provide a useful
abstraction layer for building complex distributed
applications. They give a common higher-level
interface to the application programmer and hide the
complexity of dealing with a huge variety of
underlying networks and platforms.

The distributed object-oriented middleware
frameworks that get the most attention are those that
model messaging as method calls. The major benefit
of these systems is that they make remote procedure
(or method) calls appear to be local procedure calls
(LPCs). This represents a powerful abstraction that
considerably simplifies development of remote
applications. Mature examples of this middleware
are CORBA, RMI or DCOM.

Message Oriented Middleware (MOM) has recently
received considerable attention because of its
decoupled nature that nicely solves asynchronous
one-to-many interactions and highly dynamic
distributed environments. In contrast to RPCs,
MOMs do not model messages as method calls;
instead, they model them as events in an event
delivery system. Clients send (produce) and receive
(consume) events, or "messages", and producers and
consumers do not explicitly know each other. All
applications communicate directly with each other
using the MOM. Messages generated by
applications are meaningful only to other clients,
because the MOM itself is only a message router.

Nevertheless, distributed object-oriented
frameworks and MOMs are still almost isolated
worlds that do not fully benefit from each other’s
unique advantages and concepts. We believe that the
marriage of the best of both worlds is far from being
accomplished and constructive synergies still
remain to be developed.

Regarding the architectural aspects, both
middleware approaches are mostly built on top of
centralized client/server models, and this is proven
to work well in local-area or even metropolitan-area
environments. However in wide-area settings, these
platforms clearly suffer from scalability problems,
although they can be solved by forming cluster
topologies among servers. This option may not be
economically viable in all cases. The actual trend is
to head towards decentralized models which benefit

more from the computing at the edge paradigm,
where resources available from any computer in the
network can be used and are normally made
available to their members.

Perhaps one of the most quickly-growing
technologies in computing are peer-to-peer (P2P)
networks, which perfectly fit in the computing at the
edge paradigm stated before. P2P computing
enables applications that are collaborative and
communication-focused. High availability comes
through the existence of multiple peers in a group,
making it likely that at any time there is a peer in the
group able to satisfy a user request. This stands in
stark contrast to traditional computing models,
where high availability comes through complex
load-balancing and application fail-over
mechanisms. Examples of successful applications of
this kind include Napster, SETI@Home, Gnutella,
KaZaA or eMule. Lately, many research efforts in
this field have been directed towards building
efficient, scalable, fault resilient and self-organizing
peer-to-peer overlay networks, which aim to provide
interesting services such as distributed hash tables
(DHTs), decentralized object location and routing,
and scalable group multicast/anycast [Dabek et al.
03]. In particular, the DHT abstraction provides the
same functionality as a traditional hash table, by
storing the mapping between a key and a value, thus
supporting the standard interface of put(key,
value) and get(key). The value is always
stored at the live overlay node(s) to which the key is
mapped depending on a hashed value of this key.
The really innovative aspect of these overlay
substrates is that they conform to a specific graph
structure (typically organized forming a ring) which
makes them to satisfy the condition that the number
of hops required for locating any object is O(log n) ,
where n is the total number of nodes in the system.
Examples of these technologies include [Rowstron
et al. 01], [Stoica et al. 01], [Zhao et al.]. All the
services provided by these systems give an
abstraction layer to upper-level applications which
can benefit from them.

In this paper, we go one step further in the
integration of object middleware and event-based
systems and we present DERMI, a decentralized
distributed object middleware that is completely
constructed on top of a DHT-based peer-to-peer
overlay network substrate. Its main aim is to provide
programmers with the necessary abstractions to
develop wide-area scale distributed applications.
They do not have to take care about solving the
common issues of a distributed application, like

Inteligencia Artificial V. 8, Nº 24, 2004 57

scaling, routing, replication or caching: our
middleware provides them with the necessary APIs
to do so. It benefits from the publish/subscribe
underlying functionalities provided by the peer-to-
peer layer and it thus offers distributed services such
as object mobility, caching and replication,
distributed interception and high performance
synchronous/asynchronous one-to-one/one-to-many
notifications. Furthermore, it provides innovative
programming abstractions, which include anycall
and manycall.

The rest of the paper is structured as follows:
Section II is a summary of related work in wide-area
distributed object systems and related technologies,
including an overview of Pastry and Scribe, which
are the underlying technologies DERMI is built on
top of. Section III describes DERMI itself, showing
the major benefits and innovative services of our
middleware, as well. Section IV presents CSCW
utilization applications of our object middleware
and finally, in Section V we draw conclusions from
this research and present future work trends in the
same line.

2. Related Work

A number of companies have advocated peer-to-
peer solutions to problems such as distribution of
streaming media, web hosting, distributed auctions,
etc. There is a renewed interest in a large body of
distributed systems research on resource sharing and
collaboration in both LAN and WAN environments.
In particular, the so called “WAN-OS” projects such
as Legion [Lewis et al. 96] or Globe [Van Steen et
al. 99] are well suited for supporting arbitrary P2P
applications since their goal is to make the Internet
look like a single parallel machine by hiding (to the
extent desired by the developer) all the complexities
associated with vastly different machines, local
operating systems, communication protocols, local
resource management, access control, and security
policies.

The Globe System is aimed to support a big number
of users, clients and objects through the Internet.
One of the most important features of Globe is its
distributed shared object concept, which allows
objects to be replicated and distributed between
different machines. However, due to this nature,
Globe only provides one invocation type:
synchronous calls. It has neither support for

notifications nor callbacks. DERMI provides
synchronous calls, asynchronous one-to-many calls
and cleanly supports notifications as it is built on
top of an event service.

One of Globe’s important hot spots is its wide-area
location service which maps object identifiers to the
locations of moving objects. Globe arranges the
Internet as a hierarchy of geographical, topological,
or administrative domains, effectively constructing a
static world-wide search tree, much like DNS.
Information about an object is stored in a particular
leaf domain, and pointer caches provide search short
cuts. The Globe systems handles high load on the
logical root by partitioning objects among multiple
physical root servers using hash-like techniques. As
DERMI is based on a DHT P2P overlay network, it
performs this hash function well enough that it can
achieve scalability without also involving any
hierarchy; however, the number of network hops
required to get the information varies depending on
the number of nodes in the network, whereas in
Globe remains constant.

Legion [Lewis et al. 96] provides an object based
service model such that objects can be replicated
and located arbitrarily transparently. It achieves this
by a three level naming scheme which maps human
readable names to Legion Object Identifiers
(globally unique in time and space), which in its
turn map at run-time to address and port of an active
instance of the object. Notice that this scheme is
similar to the one used by Globe for separating the
object name from its address. However, the main
difference between both systems is the way objects
are considered. In Globe, objects are assumed to be
physically distributed over many resources in the
system. However, in Legion, objects can be
physically distributed over multiple physical
resources, but are expected to physically reside in a
single address space.

In DERMI, a similar approach to Legion is used,
since we use messages (or notifications) as our core
communication mechanism. However, we have the
notion of an information bus [Oki et al. 93], thus
benefiting from a decoupled, many-to-many
communication style between objects. This
distributed information bus is responsible for
transmitting to subscribers events thrown by
publishers based on their subscriptions, and acts as a
unique virtual bus which connects all objects.

Recently, major players such as Microsoft and Sun
have announced new initiatives to support complex

58 Inteligencia Artificial V. 8, Nº 24, 2004

P2P applications in their respective operating
system environments. In the former case, P2P
computing is intended as a part of .NET strategy,
which envisions arbitrary services to be deployed
over the web via the SOAP interface. In contrast,
the JxTA open source project from Sun
Microsystems proposes to enable P2P applications
by specifying a set of protocols for peers to interact
with each other. In addition, Sun also introduced the
JINI software system designed for spontaneous
systems to connect them to a larger network, using
Java to distribute processes among the devices
connected to the network. JINI offers services such
as object discovery and code mobility intended for
LAN environments. Nevertheless, the JINI
Distributed Event Service uses Java RMI to notify
clients of changes in a remote object, which clearly
slows down performance when these changes have
to be notified to many clients.

In order to merge the best of both worlds, we could
use our DERMI middleware platform for JINI and
JxTA approaches. DERMI provides object
discovery and mobility, and could be transparently
used in wide-area P2P environments as well as in
smaller local-area collaboration rings, also
providing fault tolerance, caching, replication,
synchronous/asynchronous calls and distributed
interception techniques.

Related work in the peer-to-peer research field,
introduces so many P2P DHT-based overlay
network substrates that we could use to build our
middleware on top of. However, we needed a
publish/subscribe event system which would benefit
from the subjacent routing capabilities, which
basically consist in that each participating node is

assigned a uniform random node identifier (nodeId)
from a large identifier space. Application-specific
objects are assigned unique identifiers called keys,
selected from the same id space. Each key is
dynamically mapped by the overlay to a unique live
node, called the key’s root. In order to deliver
messages efficiently to the root, each node
maintains a routing table consisting of the nodeIds
and IP addresses of the nodes to which the local
node maintains overlay links. Messages are
forwarded across overlay links to nodes whose
nodeIds are proggressively closer to the key in the
identifier space. This mechanism is the so-called
Key-based Routing (KBR) [Dabek et al. 03]. In the
case of Pastry, keys are mapped to the live node
with the closest nodeId.

Scribe [Castro et al. 02b] offers an overlay multicast
substrate on top of the Pastry routing mechanism. It
introduces the concept of a topic (group identifier)
to which nodes can subscribe to. Once subscribed, a
node will receive all event notifications that fire on
that topic. Each group has a unique group identifier
(groupId). The Scribe node with an identifier
(nodeId) closer to the groupId acts as the rendez-
vous point for the associated group. This rendez-
vous point is the root of the multicast tree created
for the group. Group membership is managed by
creating a reverse path forwarding multicast tree
rooted at the rendez-vous point. In addition to the
basic multicast functionality, Scribe maintains the
tree structure in the face of high levels of node
failures. This is imperative if the system is going to
be robust. For further information on both Pastry
and Scribe design and features, please refer to
[Castro et al. 02b, Rowstron et al. 01].

3. DERMI

DERMI is a distributed event-based object
middleware built on top of a decentralized DHT-
based P2P overlay network. It benefits from the
publish/subscribe underlying functionalities
provided by the P2P layer and it models method
calls as events and subscriptions under this
underlying MOM. There is a prototype
implementation available at [DERMI].

Notice that in a centralized client/server model, the
event service itself could become a bottleneck in
case the number of users increased beyond its

threshold capacity. Recall that all events should
traverse the event service, which is a centralized
communication point. This problem cannot happen
in DERMI because of the inherent use of a wide-
area scalable notification service such as Scribe, as
it does not depend on any centralized point.

So far, DERMI uses Pastry as its routing P2P
substrate and Scribe as its MOM infrastructure. It is
inspired by the Java RMI object middleware. It
provides a dermi.Remote interface, a
dermi.RemoteException class and a dermi.Naming
class to locate objects in our decentralized registry,
which we will talk about later. Mimicing RMI, we
provide a dermic tool which generates both stubs
and skeletons for our remote objects, which will
transparently manage object
publications/subscriptions and its inherent

Inteligencia Artificial V. 8, Nº 24, 2004 59

notifications. Furthermore, DERMI currently
provides many features found in Java RMI, such as
remote exception handling, pass by value and by
reference, and dynamic class loading.

The main difference between RMI resides in the
communication layer located between stubs and
skeletons. While in conventional RMI a TCP socket
is established between the caller (stub) and the
callee (skeleton), DERMI stubs and skeletons both
use the event service by making subscriptions and
sending notifications in order to communicate the
method calls and their results.

Notice however that the peer-to-peer approach also
presents its drawbacks. One of them is how to
perform the bootstrapping process: how can we find
a contact node in the overlay to join? This problem
is yet to be solved and although the idea of having a
universal ring [Castro et al. 02] expected to be
joined by all participating nodes seems to be a good
starting point, this is still a hot research topic and
much work is still to be done.

3.1. DERMI Services

Once described the DERMI architecture, we now
present the innovative services we have built on top
of our middleware, which are provided to the
application layer. The presented services can be
easily constructed because of the decoupled nature
of the underlying event infrastructure.

 We outline the following services, which are
described as follows:

• Invocation abstractions , including
asynchronous one-to-many notification,
synchronous one-to-one notification, and the
new abstractions anycall and manycall.

• Decentralized object location, which includes
as well, object mobility and discovery, object
caching and replication.

• Distributed interception.

3.1.1. Invocation abstractions

Asynchronous one-to-many notification is a
distributed object event service that fits gracefully
with our overall model. The asynchronous calls are
modelled as one-to-many notifications in our
middleware. As seen in Fig. 1, all clients (stubs)
subscribe to the same topic hash (objectUID +
MethodID) and the object server (skeleton)

publishes events matching that subscription. Be
aware that for doing so, we need to query before our
object location service, which will return us the
objectUID of the object to call. Obviously, this
scheme scales better than point to point connections
to any interested client, and better performance is
achieved by the event system.

In the design of this event system we want to stay
close to the programming language chosen. Because
of this, our dermic tool generates stubs and
skeletons using the same naming notations
employed in the Java language for asynchronous
notifications. The generated stub code creates the
appropriate subscription and thus decoupling the
object server from clients.

Synchronous one-to-one notification is the
mechanism used in DERMI to model synchronous
calls. They are not implemented the same way as
asynchronous calls, because in fact, a synchronous
call is simply a direct peer-to-peer call. Therefore,
we do not use the event service (Scribe) but instead,
we use Pastry’s routing capabilities to send a
message directly from the object client (stub) to the
object server (skeleton). By doing so, we achieve a
direct peer communication between both objects,
which is more efficient than using the event service
to route events to each of them, which would
normally incur in O(log n) hops. The return results
are sent back the same way, thus obtaining a very
efficient call, involving only two hops: one for the
call and the other one for the returned result.
Obviously, these two hops do not include the
necessary hops to locate the called object’s handle
using the object location service. More about the
location service will be explained later on.

Anycall is a new and powerful way of doing a
remote procedure call (by means of notifications). It
benefits from the anycast extension implemented in
Scribe. Anycast is a service that permits a node to
send a message to a nearby member of a group,
where proximity is defined using a metric like IP
hops or delay.

The proximity-aware spanning trees built for each
group by Scribe are used to anycast messages
efficiently: messages are delivered to a nearby
group member with low delay and link stress.

Our anycall implementation uses the anycast
building block to create a call to the objects that
belong to the same multicast group: they can be, for
instance, object replicas, which can provide us with

60 Inteligencia Artificial V. 8, Nº 24, 2004

a service. The anycall client does not care about
which object provides data: it wants its petition to
be served by whoever can. So that, an anycall
means sending an anycast notification to the group,
which will make the closest member in the network
to the sender, that satisfies a condition, to answer.

Imagine, for example, a kind of CPU intensive
application like SETI@Home or United Devices
Cancer Research Project. These applications mainly
retrieve data units from servers, which are analyzed
in our home or office PCs, and the results are
subsequently sent back to these servers. An easy
approach using an anycall could be used for
retrieving data units. Now imagine we have several
servers which have available data units. We could
group them under the topic
“AVAIL_DATA_UNITS”, thus creating a Scribe
multicast group, whose topic identifier would be
hash (“AVAIL_DATA_UNITS”) . Once our client
would like to get a data unit, then it would execute
DataUnit du = anycall(“AVAIL_DATA_UNITS”,
getDataUnit) . This would send an anycast message
to the group, and the nearest group member would
check whether it has any data unit available. If that
was the case, the data unit would be directly
returned to the client and the anycast message would
not be routed further. In the other case, the anycast
message would be routed to another member of the
group and so on, until any data unit was found or the
root was reached, which would mean that none of
the members of the group had available data units.
This behaviour would throw a
dermi.RemoteException back to the client so as it is
correctly notified.

A manycall is a variation of the anycall. It basically

works by sending a manycast message to the
members of a group, i.e. the message is sent to
several group members. It is routed further until
enough satisfying members are found to satisfy a
global condition. It is similar to the anycall, in the
sense that when an object receives a manycall
message, it first checks if it satisfies a local
condition and subsequently checks whether after
calling its method, a global condition (passed along
with the message) is met. If it is so, the manycall
has been successful.

One scenario where a manycall could be very useful
would be when doing an online voting poll. Let us
imagine that we need a minimum of x votes to do a
certain job. We could simply send a manycall to the
group and each member would vote yes/no
depending on its local condition, and after doing so,
it would check the global one (if x votes have been
reached). If this is the case, the voting process
concludes successfully, communicating the result to
the manycall initiator, else the unfavorable result is
also told to the client.

3.1.2. Decentralized object location

A scalable, stable and fault-tolerant decentralized
object location service is needed to locate object
references in a wide-area environment such as
DERMI. It would be illogic to rely on a centralized
naming service which would clearly be an important
bottleneck for doing such a common task as object
location. As a consequence, we have implemented
such facility in our middleware, as explained as
follows.

The first approach that comes to our mind is to use
the DHT facilities our P2P overlay network
substrate provides us with and build our object
location service on top of it. As stated in [Cox et al.
02], a P2P lookup service would benefit from the
self-organizing and adaptive nature of the
underlying layer. However, one problem here would
be the higher latencies achieved which do not
remain constant and that become augmented as the
network size increases. This means that, for
example, in a million node network, a maximum
number of 5 hops would be required to locate the
node that contains the information about where our
object is. Despite the fact that this implementation
seems not to be as efficient as we would like it to
be, it has the advantage that it is completely
embedded in our system in a natural way and that
we do not need any other external services to do our

n0 - skeleton

n1 - stub

n5 - stub

R

n2 - stub

n3 - stub

n4 - stub

n6 - stub

Figure 1. Asynchronous one-to-many
notification. Object at node n0 sends an
asynchronous call which is headed towards the
subscribers group root (labelled R). The call
event is disseminated throughout all clients

R

Inteligencia Artificial V. 8, Nº 24, 2004 61

object lookups.

This P2P location service would basically store
object location information in order to locate these
objects by using a human-readable name. As found
in other wide-area location services [Van Steen et
al. 99], our object names would not contain any
object’s location information in order to decouple
the object’s current location from its name. An
object will have always the same name independent
of its location.

Naturally, if the node containing the object’s
location information fails, object lookups would fail
as well, as the node that contains this information is
missing. To avoid this problem, data replication
mechanisms should be used. When an object handle
is to be inserted, this data should be replicated
among the k nearest nodes to the target node. This
way, should the target node fail, information would
not be lost and the object’s handle could be
recovered from any of the k nearest nodes. To
accomplish this objective in a transparent manner, a
persistent and fault-tolerant storage management
system like PAST [Rowstron et al. 01b] could be
used.

Another more efficient wide-area scalable object
location approach would be to use a hierarchical
system such as the Globe Location Service. As
already explained in Section II, objects are located
by means of a dynamic adapting worldwide search
tree. Clearly this approach is more efficient than the
one presented before, because in the majority of the
cases, with only 2 network hops it is possible to
locate any object. However, if we only used this
system, our middleware would depend on an
external hierarchical service for object location,
which could be cumbersome if it becomes
unavailable for some reason.

We believe both systems could be used for our
middleware. For the sake of efficiency, Globe’s
hierarchical search tree approach is recommended;
however if we prefer not to depend on an external
location service, we provide a decentralized P2P
object location system, which distributes object
handles in a more sparse way without involving any
hierarchies.

Object mobility refers to the possibility of moving
object servers to different locations and continue
handling client requests. Object mobility can be
easily accomplished in DERMI by simply
serializing the object implementation (that inherits

from its skeleton) to the remote endpoint. Before
serialization, the skeleton removes all its
subscriptions from the event service and, upon
arrival to the remote endpoint, the skeleton
reconnects to the event service and turns to create
the subscriptions in the new location. Object clients
(stubs) remain unaware of these changes since they
maintain their current subscriptions unaffected.

In traditional object middleware, the strong coupling
between clients and servers through TCP
connections would require to notify all clients to
reconnect to the new server location or use instead
ad-hoc remote proxies. The first solution does not
scale for a high number of clients and the second
one is only an ad-hoc façade not suitable for
unexpected scenarios. Our decoupled approach
permits flexible object mobility and it could be used
in different settings like server load balancing,
spontaneous systems, agent systems and for highly
dynamic and manageable remote services.

Object discovery consists of using predefined
Object UIDs to locate remote objects in an event
bus. In this case, clients locate objects servers with
Ids associated to the object subscription. Object
discovery is an extremely useful functionality in
highly dynamic spontaneous scenarios such as
wireless or mobile networks.

Object discovery is usually solved in existing
systems by means of the so named lookup services.
In this line, JINI lookup service employs UDP
broadcast to automatically discover services in the
local environment. In fact, this is a nice solution that
involves a one-to-many channel like UDP
broadcast. Although it is a good solution in local
area networks, it is not appropriate for remote
endpoints, where UDP multicast or broadcast are
not available. In these situations, using our
decentralized event service (Scribe) would make the
lookup service really accessible to remote locations.

Object replication and Object caching are added
functionalities derived from the flexibility of the
event bus. Object replication is accomplished
generating special stubs that talk message protocols
through the event system in order to maintain
consistency and data among the remote object
replicas. There is not a central object server, so any
of the clients could fail and the state is preserved.
Our approach is to have all replicas join a multicast
group. Once an object wishes to call a method from
a replicated object, the stub will send the call to the
group as a special anycall. This will make any of the

62 Inteligencia Artificial V. 8, Nº 24, 2004

object replicas (normally the nearest one) to respond
the call, which makes replication totally transparent
to the user.

Object caching is also accomplished generating
special stubs for object caches. These caches listen
for state changes in a central object server in order
to maintain a local cache of the object data. Object
state changes are still routed to the central server to
maintain consistency. In this case, all object caches
should join the same multicast group for the source
object. This source object would be responsible for
updating the caches state simply by periodically
sending a multicast message to the group. Both
object replication and object caching benefit from
the event bus as the communication channel to
establish message protocols, and transmit state
changes to interested stubs.
It is obvious that both object replication and caching
can be easily constructed on top of existing object
middleware. Nevertheless, both services share a
common requirement: they need an efficient
communication channel to route state changes or
consistency protocols among the interested parties.
Whereas this communication channel can be
architected on top of one-to-one synchronous calls,
it fits better with asynchronous one-to-many event
systems.

3.1.3. Distributed interception

Distributed interception is an interesting service
for applying connection-oriented programming
concepts in a distributed setting. With this service, it
is possible to reconnect and locate type-compatible
interceptors at runtime in a distributed application.
Our model allows us to create custom skeletons and
stubs for remote classes that can intercept calls to a
running remote object. Naturally, we demand that a
queue of interceptors can be established or removed
as well. In order not to change the subscriptions of
both interceptor skeletons and intercepted remote
objects each time a new interceptor is added or
removed, we have extended our event service
classes (Scribe) in order to natively support this
feature.

Our interceptor implementation benefits from the
fact that all events that must be sent to a multicast
group in Scribe are first routed to its rendez-vous
point. As stated in [Castro et al. 02b], this could
provide us with a form of access control, however it
can also be used for our interception purposes: each
group’s rendezvous point will contain a list of

pointers to other interceptor objects, which will be
updated every time a new interceptor is added or
removed. As a consequence, each time an event is
sent to a multicast group, this notification first
arrives at its rendez-vous point, which will check
whether it has interceptors or not. If it is not the
case, the event will be normally sent to the multicast
group itself; else, the event will sequentially pass
throughout all the interceptors which may transform
the event and finally it will be routed back again to
the rendez-vous point which will, in turn, send the
intercepted event to the group members. For further
clarity, see Fig. 2.

A fault-tolerance mechanism is also needed in case
the rendez-vous point changes. Scribe provides us
with callbacks which notify these root node
modifications. A simple approach to solve this
problem would be to send all interceptor data from
the old root to the new one. However, a different
strategy should be used in case we wanted to take
care of root node failures. We could store this
interceptor information in the k nearest nodes to the
rendez-vous point.

This should be easily achieved using a large-scale
distributed storage management system such as
PAST [Rowstron et al. 01b].

Normally, the number of interceptors will be low
due to their sequential nature, efficiency quickly
degrades. Nevertheless, to prevent such problem,
and thus, reducing the number of network hops

I2

R

I1

n0

Figure 2. Distributed interception. Object at n0
sends an event to group rooted at R. This event
is sent to the interceptor queue sequentially,
thus transforming it (evt ? evt’ ? evt’’).
Finally the event is sent back to root, which
ends up delivering it to group subscribers

n1
 n2

evt

evt

evt'

evt’’

evt’’ evt’’

1

2
3

4

5 6

R

Inteligencia Artificial V. 8, Nº 24, 2004 63

between interceptors, we could opt for moving them
directly to their source objects, which would
intercept events locally. This way, each time a
publisher sent an event to its subscribers, the
publisher itself would do the interception process
locally, thus incrementing efficiency.

By using this interception mobility mechanism,
distributed interception would also be supported in
synchronous call environments where direct peer-
to-peer calls are used. Notice that it was not possible
to use interception mechanisms in direct
synchronous calls because of the fact that no
publish/subscribe mechanisms are taken into
account in these special calls. Therefore, there
existed no rendez-vous point to store interceptor
pointers in.

Observe that distributed interception is hard to
implement in strongly coupled object systems where
both clients and servers must be notified of object
changes. If a TCP connection is established among
many clients and an object server, the insertion of a
remote interceptor would imply that all clients
should reconnect to the new interceptor, and to bind
this interceptor to the remote server. Our solution
does not affect client connections, as they are
represented as invariant subscriptions.

4. CSCW Applications of DERMI

The main idea when developing the middleware
platform described throughout this paper was to

ease the development phase when architecting wide-
area distributed applications. In this line, developers
can benefit from all the services our underlying
layer provides for building these applications. We
will focus on possible uses of our architectural
model to build collaborative applications. In fact,
we have already developed an application on top of
DERMI which consists of an Eclipse [Eclipse] plug-
in for team programming, called CoopWork .

CoopWork provides a series of functionalities to
ease application development for programmer
groups. It allows concurrent project modifications
by means of tools that permit method blocking /
unblocking, file or method publication, acceptation
or denial, looking for class updates, version control
and even a chat functionality. This development
environment is, of course, totally decentralized, thus
eliminating any main server dependance.
CoopWork’s ease of use is also one of its main hot
spots. It does not require any kind of difficult
installation; just simply register it as a plug-in to
Eclipse and there is nothing more to configure.
Compared to other similar systems, like CVS,
CoopWork’s learning curve is very low.

In addition to CoopWork , we are planning, as well,
to develop more CSCW and CSCL applications that
will take advantage of DERMI’s benefits, one of
which is the PLANET project, whose main goal is to
develop a low-cost multiuser collaborative platform
for advanced training in settings like architecture,
medicine or scientific simulation. The platform will
extend an existing Collaborative Virtual
Environment (MOVE) in order to provide advanced
interaction and visualization with immersive virtual
reality 3D devices such as Head Mounted Displays,
gloves and stereoscopic projection systems.

Another objective of the PLANET project is the
generation and distribution of educational content.
To do so, we plan to extend the collaborative
platform in order to create a distributed content
repository. This repository is planned to be built on
top of DERMI and will permit hierarchical access to
distributed contents located in different knowledge
repositories through content brokers and mediators.
We will also integrate collaboration tools in the
content’s life cycle in order to promote knowledge
communities around educational content
hierarchies.

Further, we believe that DERMI can be the base
infrastructure for a CSCW wide-area component
framework, and so, it would seamlessly support the Figure 3. A snapshot taken from CoopWork

64 Inteligencia Artificial V. 8, Nº 24, 2004

concept of a shared session inhabited by remote
users that interact with synchronous and
asynchronous components in a controlled and secure
environment. This way, the transition from local-
area CSCW applications to wide-area ones should
not present many difficulties. The middleware’s
CSCW layer could be easily adapted to match the
underlying layer’s peer-to-peer nature and so,
changes in the application’s code should be
minimal.

5. Conclusions and Future Work

This paper presents a wide-area decentralized
distributed object middleware built on top of a
publish/subscribe notification service (Scribe). We
argue that the underlying decoupled abstraction
fuels innovative services such as object mobility,
object replication and caching, distributed
interception, object discovery and high performance
synchronous/asynchronous one-to-one/one-to-many
notification. Whereas many of them can be
architected on top of traditional synchronous calls,
they fit and scale better with one-to-many
asyncronous event services.

Further, we propose several new programming
abstractions, such as anycall and manycall, which
allow the programmer to make calls to groups of
objects without taking care of which of them
responds until a determinate condition is met.

We foresee interesting research in the confluence of
decoupled event services and distributed component
infrastructures. We also believe that many settings
can really benefit from this decoupled model. In
particular, connection-oriented programming and
aspect oriented programming could use and improve
our distributed interceptors and connection service.

DERMI is an open source project with a stable
version including samples, documentation and unit
tests. We continue development of this environment
in order to provide other services like a distributed
container model. We also begin to work with class
tagged attributes to produce a more elegant code
generation mechanism at method call level. We plan
as well to replace naming conventions in Remote
interfaces with attributes selecting different
parameters like replication, notification, caching,
etc.

As future work we are implementing an enhanced
event system, called the Connection bus, which will
provide extended functionalities ideally suited for
supporting distributed component interactions.
Publisher registration/disconnection events and a
meta-information connection service are especially
interesting new services to be added in a near future
to DERMI.

Furthermore, we are also thinking of introducing
new services such as system monitoring and
reflection, and devising a security service along with
a decentralized persistence service. A P2P common
API was proposed in [Dabek et al. 03], which is
included in the recent version of FreePastry
[FreePastry]. We plan, as well, to move our
middleware to this version so as to take advantage
of this unified API.

In conclusion, although much work remains to be
done, we consider that distributed components,
containers and decoupled event systems still have
constructive synergies to be explored.

Acknowledgements

This work has been partially supported by the
Spanish Ministry of Science and Technology
through project TIC-2003-09288-C02-00.

References

[Carzaniga et al. 01] A. Carzaniga, D.S.
Rosenblum, and A.L. Wolf. 'Design and
Evaluation of a Wide-Area Event Notification
Service'. ACM Trans. on Computer Systems, 19.
pp. 332-383. (2001).

[Castro et al. 02] M. Castro, P. Druschel, A.M.
Kermarrec, and A. Rowstron. 'One Ring to Rule
them All: Service Discovery and Binding in
Structured Peer-to-Peer Overlay Networks'.
Proc. of the 10th ACM SIGOPS European
Workshop. (2002).

[Castro et al. 02b] M. Castro, P. Druschel, A.M.
Kermarrec, and A. Rowstron. 'SCRIBE: A large-
scale and decentralized application-level
multicast infrastructure'. IEEE Journal on
Selected Areas in Communications, 20. (2002).

[Cox et al. 02] R. Cox, A. Muthitacharoen, and R.T.
Morris. 'Serving DNS using a Peer-to-Peer
Lookup Service'. Proc. of the 1st International

Inteligencia Artificial V. 8, Nº 24, 2004 65

Workshop on Peer-to-Peer Systems. pp. 155-
165. (2002).

[Dabek et al. 03] F. Dabek, B. Zhao, P. Druschel, J.
Kubiatowicz, and I. Stoica. 'Towards a Common
API for Structured Peer-to-Peer Overlays'. Proc.
of the 2nd International Workshop on Peer-to-
Peer Systems. (2003).

[DERMI] DERMI and ERMI website,
http://ants.etse.urv.es/ermi

[Eclipse] Eclipse Project website,
http://www.eclipse.org

[Eugster et al. 00] P.Th. Eugster, P. Felber, R.
Guerraoui, and A.M. Kermarrec. 'The Many
Faces of Publish/Subscribe'. Technical Report
DSC ID:2000. (2000).

[FreePastry],
http://www.cs.rice.edu/CS/Systems/Pastry/FreeP
astry

[Lewis et al. 96] M. Lewis and A. Grimshaw. 'The
Core Legion Object Model'. Proc. of the 5th
IEEE International Symposium on High
Performance Distributed Computing. (1996).

[Oki et al. 93] B. Oki, M. Pfluegl, A. Siegel, and D.
Skeen. 'The Information Bus – An Architecture
for Extensible Distributed Systems'. Proc. of the
ACM 14th Symposium on Operating Systems
Principles. pp. 58-68. (1993).

[Rowstron et al. 01] A. Rowstron and P. Druschel.
'Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems'.
IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware).
pp. 329-350. (2001).

[Rowstron et al. 01b] A. Rowstron and P. Druschel.
'Storage Management and caching in PAST, a
large-scale, persistent peer-to-peer storage
utility'. ACM Symposium on Operating Systems
Principles. (2001).

[Stoica et al. 01] I. Stoica, R. Morris, D. Karger, M.
Frans Kaashoek, and H. Balakrishnan. 'Chord: A
Scalable Peer-to-Peer Lookup Service for
Internet Applications'. Proc. of the ACM
SIGCOMM 2001. (2001).

[Van Steen et al. 99] M. Van Steen, P. Homburg,
and A.S. Tanenbaum. 'Globe: A Wide-Area
Distributed System'. IEEE Concurrency. pp. 70-
78. (1999).

[Zhao et al.] B. Zhao, J. Kubiatowicz, and A.D.
Joseph. 'Tapestry: An Infrastructure for Fault-

tolerant Wide-area Location and Routing'. UCB
Tech. Report UCB/CSD-01-1141.

[Zhuang et al. 01] S.Q. Zhuang, B. Zhao, A.D.
Joseph, R.H. Katz, and J.D. Kubiatowicz.
'Bayeux: An Architecture for Scalable and Fault-
tolerant Wide-area Data Dissemination'. Proc. of
the 11th International Workshop NOSSDAV
2001. pp. 11-20. (2001).

