
Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. No.13 (2001), pp.108-114.
ISSN: 1137-3601. © AEPIA (http://www.aepia.dsic.upv.es/).

BrainLets: Dynamic Inferential Capabilities for Agent-based
Web Systems

Edgardo Belloni Marcelo Campo

ISISTAN Research Institute - UNICEN University
Campus Universitario - Paraje Arroyo Seco

Tandil (B7001BBO), Buenos Aires, Argentina
{ebelloni, mcampo}@exa.unicen.edu.ar

Abstract

This article presents Brainlets, a new mechanism designed to enhance the functionality of web servers with
inferential capabilities. Brainlets are mobile Prolog modules supported by an extension to JavaLog virtual
machine that enables a strong mobility model. This support is enabled in web servers trough specialized
servlets, called MARlets, which provide the JavaLog inference machine. BrainLets can migrate among
different hosts in order to meet other agents, to access to resources provided there, or to provide intelligent
services under demand.

Keywords: Intelligent and mobile agents; Multi-paradigm languages; Agent-based web systems.

1. Introduction

The widespread use of computers and their
connectivity, particularly the World Wide Web and
the Java programming language, have provided a
new influx in the research, development, and
deployment of agents.

A particular motivation for the use of agents is the
huge amount of information available on the
Internet. Agents have a significant potential looking
for information, filtering it, and extracting it from
different sources. The ability to represent and act on
behalf of the user represents a crucial capability of
agents and provides enormous potential for their
deployment.

This potential, however, in the near past has been
limited due to the lack of appropriate tools to
support the flexible development of agents working
on web sites. Particularly, the Java platform,
although it is very powerful, it is not enough to

develop agents showing an intelligent and flexible
behavior.

We had to deal with this situation during the
development of a project concerning the design and
implementation of a multi-agent system in the
socialware1 domain. This multi-agent system
involves a network of web sites placed in different
cities and countries, each one representing a virtual
community composed by common users and
members of diverse organizations. The web sites
provide several services supporting the different
social activities carried out by the members of these
communities. The services are based on personal
preferences and their development demands a
complex engineering dealing with dynamically
changing requirements and involves software agents

1 Socialware: multi-agent systems developed in order to
assist in various social activities on network communities
[Hattori et al. 99].

with characteristics such as autonomy, social ability,
reactiviness and proactiviness.

In this context, we choose a multi-paradigm
approach for the development of web sites based on
intelligent and mobile agents. The approach
integrates both object-oriented and logic paradigms
for the design and programming of agents. It is
essentially based on JavaLog [Amandi et al.
99][Zunino et al. 01], a programming language that
integrates both Java and Prolog. Through this
support software agents can be developed as having
certain mental attitudes, beliefs, desires and
intentions, which represent, respectively, their
informational, motivational and deliberative states.
In this sense, an agent can be completely specified
by the events that it can perceive, the actions it may
perform, the beliefs it may hold, the goals it may
adopt, and the plans that give rise to its intentions.

Additionally, this support integrates mobility
services that enable logic-based agents, called
BrainLets, to migrate to another host in order to
meet other agents or to access to services and
resources provided there. A BrainLet is a JavaLog
program that can autonomously move among
different hosts following a strong mobility model.
Through the architecture supporting BrainLets a
web server can be extended with inference
processing capabilities.

Major advantages of this multi-paradigm approach
are seen developing agents that require an intelligent
and flexible behavior. Reducing expensive global
communication costs by moving the computation to
the data sources and distributing complex
computations onto several hosts, which could be
heterogeneous, is other worth mentioning benefit.
Additionally, Brainlets can be used to provide web
servers with more intelligent services that can be
used by common web clients.

The article is structured as follows. The following
section analyzes the rationale and motivations for
our multi-paradigm approach to develop stationary
and mobile agents that support an intelligent
behavior. Section 3 introduces BrainLets, mobile
logic-based agents in our approach, and the basic
software architecture necessary to support them.
Section 4 presents the details of the implementation
support necessary to extend web servers
functionality with logic modules. Finally, in
Section 5, some concluding remarks are delineated
and options for future work are discussed.

2. Intelligent and Mobile Agents: A
Multi-paradigm Approach

In a broad sense, an agent is any computer program
that acts on behalf of a (human) user. In this context,
a mobile agent is a computer program, which
represents a user in a computer network, and it is
capable of migrating autonomously from node to
node, to perform some computation on behalf of the
user [Karnik and Tripathi 98].

Object-oriented languages have characteristics that
partially satisfy the programming requirements of
agents. Certainly, Shoham [Shoham 93] has
introduced the term agent-oriented programming as
a form of object-oriented programming. Concerning
this point of view, an agent’s state consists of
beliefs, capabilities, choices, and similar notions,
and the computation consists of interactions, such as
informing, offering, accepting, rejecting and
competing [Shoham 97]. In this context, an object
can model an agent. The object’s methods represent
the agent’s abilities (the agent’s behavioral
capabilities) and the object’s variables of instance
represent the agent’s mental state (the agent’s
knowledge).

Multi-agent systems - i.e. systems dealing with
stationary cognitive agents distributed on a
computer network, which communicate one another
in order to pursue a common goal - could benefit
from integration with mobility services in many
ways. For instance, groups of agents could be
composed by a combination of heavyweight,
cognitively complex agents dispatching tasks to
lightweight agents pursuing only a few goals. These
lightweight agents could proactively leave the
group, move themselves to other hosts and possibly
rejoin the group when they have accomplished their
goals. Other scenario would show a relatively
complex agent cloning itself in order to accomplish
a specific goal on a specific host. Such capability is
particularly interesting when an agent makes
sporadic use of a valuable shared resource. There
would be a number of benefits from such
organizations. Efficiency, for instance, can be
improved by moving lightweight agents performing
queries over a large database to the host of the
database itself. Response time and availability
would improve when performing interactions over
network links subject to long delays or interruptions
of service.

Object-oriented languages also satisfy the
programming requirements of mobile agents.
Currently, Java is the most frequently used
programming language for development of mobile
agent systems. Aglets [Lange and Oshima 98],

Voyager [ObjectSpace Corp. 98] and Odissey
[General Magic Corp. 98] are examples of Java-
based mobile agent systems. The multi-platform
support and the ubiquity of the Java virtual machine
make Java particularly well suited for mobile
agents’ technology. The networking support of Java
includes sockets, URL communication, and a
distributed object protocol called remote method
invocation (RMI). These features smooth the
progress of dissemination of mobile agents
throughout the Internet. Furthermore, Java has other
features not found in any other language that
directly support implementation of mobile agents
[Wong et al. 99]. For instance, Java facilitates
migration of agent’s code and state via its class-
loading and object serialization mechanisms.

Although the benefits that object-oriented languages
provide for the agent-oriented programming in
general, and particularly the Java language for the
mobile agents programming, these languages have
limitations to develop agents requiring an intelligent
and flexible behavior. These limitations are
demonstrated at the time of dealing with the agents’
mental attitudes. In this case, different algorithms of
inference, applied on the instance variables that
represent the knowledge of the agent, must be
implemented. These algorithms are, in general, hard
to implement and they provide little scope of
flexibility facing changes [Amandi et al. 99].

It is widely accepted that the logic-programming
paradigm represents an appropriate alternative to
manage mental attitudes due to its evident support to
represent and infer relationships among mental
attitudes such as intentions, goals and beliefs. Logic
languages enable us to represent mental attitudes in
declarative form through logic clauses. Deductive
algorithms interpret the clauses that, in the context
of the agent-oriented programming, give origin to
agents’ knowledge dependent reasoning.

Therefore a multi-paradigm approach, integrating
both object-oriented and logic programming,
represents a superior approach to support the
development of intelligent agents systems. It aims to
solve the limitations mentioned above, enabling
stationary and mobile agents to manage complex
mental attitudes.

3. BrainLets: Mobile Logic-based Agents

The fundamental concern of this work is the
materialization of generic software architecture to
support stationary and mobile agents based on
JavaLog, a multi-paradigm programming language.

As was analyzed in section 2, multi-agent systems
could benefit from integration with mobility
services in many ways. In order to integrate
mobility services to the JavaLog language, a
mechanism that enables executing JavaLog’s logic
modules to migrate to another host using a strong
mobility model was developed. This mechanism
aims to enable an executing unit, in this case the
brain component of an multi-paradigm agent, to
move as a whole by retaining its executing state -
i.e. retaining control and internal data associated to
the executing unit, e.g., the program counter or the
call stack - across migration. The migration is
transparent, in that the brain component resumes its
execution on the new host right after the instruction
that triggered the migration.

JavaLog´s mobile logic modules are viewed in our
approach as logic-based agents called BrainLets,
able to move among different servers in order to
perform some computation close to a valuable
remote resource or to provide intelligent services
under demand.

3.1. A Software Architecture Supporting
BrainLets

Mobile agents require protected agent execution
environments (or servers) that act like a dock station
that accepts agents and provides native resources for
them. A mobile agent server is responsible for
executing agent code and providing primitive
operations to agent programmers, such as those that
allow agents to migrate, communicate, access host
resources, etc. A logical network of agent servers
implements the mobile agent system. Agent servers
can be specialized to provide application-specific
services.

Figure 2 shows the software architecture developed
to implement a server of BrainLets. This is
essentially founded on the generic architecture of
Java-based mobile agents described in [Wong et al.
99]. The deployment diagram uses UML extensions
proposed for mobility properties by Odell et al
[Odell et al. 00].

This architecture prescribes that a multi-paradigm
agent is a composite JavaLog object that supports
mobility and can communicate with other agents, at
level of its brain component. The architecture
includes the following major components: an agent
manager, an inter-agent communications manager, a
security manager, an application gateway and a
directory manager.

The agent manager receives BrainLets for execution
on the local host and sends BrainLets to remote
hosts. The security manager authenticates the
BrainLet before it is allowed to execute. Thereafter,
the Java virtual machine automatically invokes the
security manager to authorize any operations using
system resources.

BrainLets may use the directory manager to identify
the location of an application server and then
migrate to the host on which the server is located.
The application gateway provides a secure entry
point through which agents can interact with
application servers. An arriving mobile agent
accesses to resident servers such as database servers
through this gateway. The inter-agent
communication manager facilitates communication
among agents spread through the network.

A local proxy hides the remoteness of a BrainLet
executing in a different space of address. A proxy is
a surrogate for a BrainLet. It serves as a safeguard
that protects the BrainLet from direct access to its

public methods. The proxy provides location
transparency for the BrainLet; that is, it can hide the
BrainLet´s real location. If the actual BrainLet
resides at a remote host, the proxy forwards the
requests to the remote host and returns the result to
the local host.

3.2. BrainLet’s Life Cycle

As a specialized brain component, a BrainLet
supports all the built-in predicates defined for a
standard prolog interpreter, as well as those inter-
agent communications mechanisms based on logic
modules provided by JavaLog. A BrainLet extends a
brain component with mobility services and
provides support to offer its services to web
applications.

Migration of a BrainLet between different hosts is
illustrated in the Figure 3. When a BrainLet
autonomously decides to migrate to another host,
because of its informational, motivational and
deliberative states, it calls the move_to built-in

Inter-agent
Communication
s Manager

Agent
Manager

Security
Manager

Directory
Manager << Mobile >>

Internet

Server of BrainLets

Server of BrainLets

BrainLet
<<reinstalled>>

Application
Gateway

Multi-paradigm
Agent

BrainLet
<<at-home>>

0 .. *

Logic
Module

0 .. * Multi-paradigm
Agent

BrainLet
<<at-home>>

0 .. *

Logic
Module

0 .. *

Figure 2 - Software architecture supporting BrainLets

BrainLet´s Execution State
…
get_host(Properties, Remote_Host),
move_to(Remote_Host),
rcall(// localhost/blackboard, article(Type, Offer)),
preference(Type, Offer),
…
return,
...

BrainLet
<< at_home>>

Local Host

Agent
Manager

BrainLet
<<reinstalled>>

Remote Host

Agent
Manager

BrainLet
<<serialized>>

BrainLet´s Execution State
…
get_host(Properties, Remote_Host),
move_to(Remote_Host),
rcall(// localhost/blackboard, article(Type, Offer)),
preference(Type, Offer),
…
return,
...

Figure 3 – Migration of a BrainLet between different hosts

predicate. Before transport, the agent manager in the
local host serializes the BrainLet and its state - i.e.
its knowledge base and code, current goal to satisfy,
instantiated variables, backtracking points, etc.
Then, the agent manager sends the serialized form
to its counterpart on the destination host. Upon
receipt of an agent, the agent manager in the remote
host reconstructs the BrainLet and the objects it
refers to, and then it resumes its execution.
Eventually, after performing some computation, the
BrainLet could return to the originating host calling
the return built-in predicate.

4. Extending Web Server Services

One the main objectives of our work is the provision
of more intelligent services to web sites via
Brainlets. Normally, web servers provide means to
extend their functionality through Servlets. A
Servlet is a piece of Java code that a web server
loads to handle client requests. It represents a
pluggable extension to a server that enhances the
server´s functionality. Servlets execute within the
web server´s process space and they persist between
invocations. The Servlet mechanism is the basis for
developing extensions that support Brainlets, called
MARLets (Mobile Agents Resources).

4.1. MARlets

A MARlet extends a web server with inference
processing capabilities. Basically, it extends the
Java servlets support encapsulating a specialized
brain component and providing services to access it.
In this way, a MARlet is able to provide more
intelligent services under demand accepting
requests, such as adding and deleting logic modules,
activating and deactivating logic modules, and
performing logic queries. In this sense, a MARlet
offers inferential services to web applications or
agents. Additionally, a MARlet represents a web
dock for Brainlets.

The following example shows the code
implementing a simple MARlet. This MARlet
defines a brain component as an instance variable.
As a specialized servlet, it redefines the service
method in order to deal with the requests that
receives from clients. Each time the server
dispatches a request to a servlet, it invokes the
servlet´s service method. The service method
accepts two parameters: a request object and a
response object. The input and output streams,
which are manipulated for the MARlet to
communicate with the MARlet´s clients, are
obtained from these objects. The request object tells
the servlet about the client’s request, while the

response object is used to return a response. After
that, this method gets the operation to accomplish
from the input stream. A lexical convention is
defined in order to name the valid operations. For
instance, ¨addCapability¨ defines an operation to
add a logic module to the brain component. Then,
the corresponding parameters for the operation are
read from the input stream. Finally, the
corresponding operation is delegated to the brain
component.

//--- DefaultMARlet.javalog, v 1.0 ---//
import JavaLog.*; import javax.servlet.*;
...

public class DefaultMARlet extends GenericServlet {

 public MobileBrain brain;

 public DefaultMARlet() {
 brain = new MobileBrain();
 initKnowledge();
 }
 public MobileBrain brain() {
 return this.brain;
 }

/* Public methods implementing the services provided by
this simple MARlet. These methods are addCapability,
removeCapability, activeCapability, and answerQuery */

public void addCapability(String idModule,
 String knowledge){

 brain().addCapability(idModule, knowledge);
}
...

 public boolean answerQuery(String query) {
 return brain().answerQuery(query);
 }

//---- The service method ---//
public synchronized void service(ServletRequest req,
ServletResponse res)
........
 String serviceRequested;
 serviceRequested = req.getParameter("service");

 if(serviceRequested.equals("addCapability")) {

 String idModule = instream.readLine();
 String knowledge = instream.readLine();
 this.addCapability(idModule, knowledge);

 }else if(serviceRequested.equals("activeCapability"))
{

 String idModule = instream.readLine();
 this.activeCapability(idModule);

 } // End of service method
...
} //--- End of DefaultMARlet class ---//

A MARlet client sends requests to a MARlet in
order to require inferential services. The following
example partially shows the code of two very simple
clients. The example involves a seller and a
customer. The seller posts its article offers, and the

customer is able to select and buy different articles
based on its preferences.

The simple seller sends a request to the MARlet to
accept a logic module, which maintains offers for
several electronic devices. The MARlet adds this
logic module, called offers, as a new capability for
its brain component. The following piece of Java
code shows the seller posting offers.

//--- SimpleSeller.java, a Java client

public class SimpleSeller {
...
public void postOffers(){
URLConnection connect;

...
//--- Posting offers. Adding a capability ----------//
connect = (new URL(

"http://localhost:8080" +
"/servlet/DefaultMARlet?service=addCapability")).

openConnection();
...

connect.connect();
outstream = connect.getOutputStream();

outstream.println("offers"); //--- idModule ---//
outstream.println("

article(tv,[hitachi, 20in,800],
sendEmailTo(sales@goodies.com)).

article(radio,[panasonic, h7823,80],
sendEmailTo(sales@goodies.com)).

article(tv,[sony, 21in, 1200],
sendEmailTo(sales@goodies.com)).

"); //--- knowledge ---//
...

}...} //--- End of SimpleSeller class

In the other hand, the customer sends a request to
the MARlet to activate the new capability of the
brain component. It aims to enable the brain
component to accept queries involving article offers.
Then, the customer sends a goal request to the
MARlet. The MARlet delegates this goal request to
the brain component. In this way, the brain asserts
the customer’s preferences about cards and TV sets
in its knowledge base, and infers an appropriated
article according to these preferences. Finally, the
customer reads the response from the input stream.
The following Java code shows the customer client
implementation.

//--- SimpleCustomer.java, other Java client

public class SimpleCustomer{
...
public boolean buyArticle(Article anArticle){

...
//--- Activating a MARlet’s capability ----------//
connect = (new URL("http://localhost:8080" +

"/servlet/SimpleMARlet?service=activeCapability")).
openConnection();

...
connect.connect();
outstream = connect.getOutputStream();
outstream.println("offers"); //--- idModule ---//

//-- Choosing an offer according to my preferences ----//
connect = (new URL("http://localhost:8080" +

"/servlet/DefaultMARlet?service=answerQuery")).
openConnection();

...
connect.connect();
outstream = connect.getOutputStream();
instream = connect.getInputStream();
type = anArticle.type;
outstream.println("

?- assert(preference(car,[ford, Model, Price]) :-
Model > 1998, Price < 60000),

assert(preference(tv,[sony, Model, Price]) :-
Model = 21in, Price < 1500),

article(" + type + ",[Brand, Model, Price],
sendEmailTo(Email)),

 preference(type,[Brand, Model, Price]).
"); //--- Goal Request ---//

success = instream.readBoolean();
response = instream.readHashTable();

if success {
// Buying the article. Sending an e-mail to the provider//
 ...

emailAddress = response.get("Email").toString();
this.mailTo(emailAddress, subject, txt);

 ...
}...
}...}//--- End of SimpleCustomer class

4.2. Brainlets: Moving Around Sites

The previous example presented a remote evaluation
model via Brainlets. That is, the client sends the
code that is executed in the server to get a response.
If we have many sites offering products with
MARlet support installed, we can then use a
Brainlet to move around these sites and select the
best available offer according the customer
preferences. The following code shows a simple
Brainlet that implements this mechanism. The
example assumes that each site provides a uniform
interface.

logicModule (customerBrainlet) :- {

Sites=[www.buyers.com,www.offers.com,...].

preference(car,[ford, Model, Price]) :-

Model > 1998, Price < 60000).
preference(tv,[sony, Model, Price]) :-

Model = 21in, Price < 1500).
lookForOffers(A,[],_,[]).
lookForOffers(A,[S| R], [O|RO], [O| Roff]):-

move_to(S),
article(A, Offer, Email),
O= (S,Offer,Email),
lookForOffers(A, R, RO,ROff).

lookForOffers(A,[S| R], [O|RO], [O| Roff]):-
lookForOffers(A, R, RO,ROff).

buy(Art):- lookForOffers(Art, Sites,R,Offers),
 selectBest(Offers, (S,O,E)),
 move_to(S),
 buy_article(O,E).
?- buy(#Art).
}

In this example the Brainlet has a goal of buying an
article received as a parameter. The buy clause looks
for offers available in the different sites, selects the
best and calls a generic predicate to buy the article
(this process is not relevant here). The
lookForOffers predicate implements the process of
moving around the defined sites looking for the
available offers for the article (we assume that we
get the first offer). If there is no offer in the current
site, the Brainlet goes to the next one in the list. The
SimpleCustomer class defined previously must
publish this Brainlet.

5. Conclusions and Future Work

In this article, a multi-paradigm approach for the
development of intelligent agents has been
introduced. This approach integrates both logic and
object-oriented programming paradigms to support
the development of stationary and mobile agents
capable to manage complex mental attitudes. The
approach is materialized by a software architecture
based on the JavaLog programming language.

Major advantages of Brainlets are seen developing
agents that require an intelligent and flexible
behavior. Reducing expensive global
communication costs by moving the computation to
the data sources and distributing complex
computations onto several hosts, which could be
heterogeneous, is other worth mentioning benefit.

The MARlets support provides a simple way to
extend any web server supporting servlets with
mobile inferential capabilities. Although, the
efficiency of the inferential capabilities can be low,
considering that JavaLog is implemented in Java.
This limitation, however, is not relevant when
complex inferential behaviors are needed to provide
a service.

The proposed approach represents one of the current
lines into an ongoing research and development
project, at ISISTAN Research Institute. This project
aims to develop intelligent agents in the socialware
domain.

There are several open topics that require further
research. Backtracking among different hosts is one
of the most interesting; it is due to the different
semantics that can be adopted.

6. References

[Amandi et al. 99] A. Amandi, A. Zunino and R.
Iturregui. Multi-paradigm Languages Supporting
Multi-agent Development. In Multi-Agent System
Engineering. F. J. Garijo and M. Boman (Eds.).
Lecture Notes in Computer Science, Vol. 1647, pp.
128–139. Springer-Verlag, Berlin - Heidelberg -
New York, 1999.

[General Magic Corp. 98] Odissey White Paper.
General Magic Corp. Cupertino, Calif., 1998.

[Hattori et al. 99] F. Hattori, T. Ohguro, M. Yokoo,
S. Matsubara and S. Yoshida. Socialware:
Multiagent Systems for Supporting Network
Communities. Communications of the ACM. Vol.
42, No. 3, pp. 55-61. March 1999.

[Karnik and Tripathi 98] N. Karnik and A. R.
Tripathi. Design Issues in Mobile Agent
Programming Systems. IEEE Concurrency, Vol. 6,
No. 3, July-September 1998.

[Lange and Oshima 98] D. Lange and M. Oshima.
Programming and Deploying Java Mobile Agents
with Aglets. Addisson-Wesley Longman, Reading
Mass., 1998.

[ObjectSpace Corp. 98] Voyager White Paper.
ObjectSpace Corp. Dallas, Texas, 1998.

[Odell et al. 00] James Odell, H. Van Dyke Parunak
and Bernhard Bauer. Extending UML for Agents.
AOIS Workshop at AAAI 2000, Austin TX, 2000

[Shoham 93] Y. Shoham. Agent-Oriented
Programming. Artificial Intelligence, 60(1), pp. 51-
92, March 1993.

[Shoham 97] Y. Shoham. An Overview of Agent-
Oriented Programming. In Software Agents, J. M.
Bradshaw (Ed.), pp. 271-290. MIT Press, 1997.

[Wong et al. 99] D. Wong, N. Paciorek and D.
Moore. Java-based Mobile Agents. Communications
of the ACM. Vol. 42 - No. 3, pp. 92–102, March
1999.

[Zunino et al. 01] A. Zunino, L. Berdún and A.
Amandi. JavaLog: un Lenguaje para la
Programación de Agentes. Revista Iberoamericana
de Inteligencia Artificial. En este número. No.13
(2001). ISSN: 1137-3601. AEPIA
(http://www.aepia.dsic.upv.es/).

