
Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. No.13 (2001), pp. 53-67.
ISSN: 1137-3601. © AEPIA (http://www.aepia.dsic.upv.es/).

Applying Proto-Frameworks in the Development
of Multi-Agent Systems

Andrés Díaz Pace1, Federico Trilnik, Marcelo Campo

ISISTAN Research Institute, UNICEN University
Campus Universitario, Paraje Arroyo Seco - (B7001BBO) Tandil, Argentina

1Also CONICET
{adiaz, ftrilnik, mcampo}@exa.unicen.edu.ar

Abstract

Current trends in software development are increasingly reasoning about software applications in terms of
multi-agent systems (MAS). However, the development of multi-agent applications is still a technically
difficult task. One of the main barriers is the lack of comprehensive design practices to move systematically
from problem analysis and agent models to effective implementations. This work describes a design approach
to assist multi-agent development based on the notion of proto-frameworks, which proposes the
materialization of agent models expressed in terms of architectural models into object-oriented counterparts,
enabling then different implementation alternatives for multi-agent frameworks according to specific
developers´ needs.

Keywords: Multi-agent development, design approach, frameworks, architectural styles.

1. Introduction

The adoption of the agent paradigm [Demazeau91,
Sycara98, Weiss99] in software development
necessarily involves news ways of conceiving
software systems emphasizing properties such as
modularity, autonomy, distribution and adaptability.
As current software applications get bigger both in
size and complexity, multi-agent systems (MAS)
appear as one of the most promising approaches to
handle such continuous growing [Wooldridge96].
The research in the field includes several lines of
work regarding agent languages [Finin97],
organizational models [Gutknecht97], learning
[Rao90, Nilsson96] and coordination [Lesser98],
among others. Nonetheless, despite agent benefits,
the development of multi-agent applications has
been mostly homegrown [Bradshaw97] and it still
requires a strong grasp of experience and design
skills. This fact has somehow limited the application

of MAS in practical cases. In contrast with
conventional object-oriented technologies, MAS
seem still not mature enough to provide
comprehensive mechanisms that can be applied by
developers in order to make a transition from
problem analysis to design and implementation
matters. Therefore, it is reasonable to argue that a
combination of agents with existent object-oriented
techniques can contribute to provide computational
models promoting better modularity and
adaptability in software products. In particular,
object-oriented frameworks [Johnson97, Fayad99]
can play a key role in this context. They can be
useful means to express reusable designs and
capture the essence of patterns, algorithms,
components and architectures, even when some
extension mechanisms may need to be considered in
order to adapt frameworks to the agent
requirements.

In this work, we describe a design approach to assist
multi-agent development based on the application of
a method for object-oriented framework design
which combines architectural styles [Shaw96,
Bass98] with object-oriented concepts. This design
method relies on the notion of object-oriented
materialization of software architectures derived
from non-object-oriented architectural styles, but it
is general enough to support the development of
MAS as well. The roots of this work started with
the development of a simple object-oriented
framework called Bubble, initially designed for
multi-agent simulation [DiazPace00]. This
framework was used to support the implementation
of several simulation applications on different
domains, but the most relevant part of this process
was that Bubble became also the basis for building
other frameworks on top of it. After several
refinements of Bubble, we realized that the
framework actually provides a set of domain-
independent architectural abstractions which made
easier the mapping of domain concepts into
computational components. Additionally, the
object-oriented representation enabled the reuse of
essential mechanisms provided by the architecture
in the same way a normal framework does.
However, the mechanisms provided by Bubble are
more oriented towards a generic architectural
behavior than a generic behavior of domain. This
aspect made difficult to classify the framework into
the different framework categories proposed by the
literature. Essentially, Bubble is a framework
reused by inheritance (i.e., a white-box framework),
but from a functional point of view it cannot be
considered as a horizontal or service framework
because it is not used by different framework.
Instead of this, different frameworks can be derived,
by inheritance, from Bubble through the mapping of
domain components into proper Bubble
components. For this reason, we refer to Bubble as a
proto-framework [Campo01], that is an object-
oriented framework that provides the essential basis
to build new frameworks that adopt the Bubble
underlying architecture. As regards multi-agent
systems, the notion of proto-frameworks can serve
to the design of multi-agent applications by
allowing the materialization of agent models
expressed in terms of architectural models into
object-oriented counterparts, and then enabling
different implementation alternatives for multi-agent
frameworks according to specific developer needs.

The paper presents our experience with
development of the proto-framework concepts, and
its application to the development of MAS. In
particular, we take as case-study the development of
an industrial framework for Enterprise Quality
Management systems using multi-agent technology.

The rest of the paper is organized into six sections.
The first section discusses about frameworks and
multi-agent development. The second section
introduces the foundations of proto-frameworks.
Then, the third section talks about the design of a
particular proto-framework called Bubble. The
fourth section describes the multi-agent case-study
mentioned before. And finally, the last two sections
present the lessons learned and the conclusions of
this work.

2. The Role of Frameworks in the
Development of MAS

The concepts of MAS are being spread everywhere.
Many software applications are being viewed, more
and more, as groups of autonomous entities
collaborating with one another to collectively
accomplish some goals. This popularity has lead
some authors to talk about a so-called multi-agent
software engineering [Wooldridge97, Jennings99,
Garijo99]. These arguments are based on the
suitability of multi-agent models to better capture
the intrinsic complexity of software applications
composed by a large number of parts with many
interactions among them. However, as the research
in the field is recently emerging, we cannot find too
much quantitative evidence about these facts.
Reality shows that the multi-agent paradigm still
lacks of well-established design practices to move
systematically from problem analysis and agent
models to effective implementations. In recent
times, there has been a number of attempts to
provide methodologies for MAS [Burmeister96,
Drogoul98, Wooldridge00]. To exemplify these
issues, let’s take for example the Gaia methodology
[Wooldridge00], which proposes a set of models to
deal with analysis and design of MAS. The
methodology aims the development of multi-agent
applications through successive refinements of
several agent models, but it remains neutral with
respect to both the target domain and the agent
architecture. Figure 1 shows a summary of the Gaia
models and its more important concepts. For the
sake of our discussion, we will focus on the design
phase proposed by the methodology, that is how to
transform the abstract models derived during the
analysis phase into more detailed specifications that
can be directly mapped to agents. Readers looking
for more information can consult the original work
[Wooldridge00].

Very briefly, the Gaia design process comprises
three models: an agent model, a services model and
an acquaintance model. Firstly, an agent model is
created, identifying the agent types that will make

the system work and the agent instances that will be
generated from these types. Then, a services model
should specify the main services that are required to
materialize each agent’s role. And finally, an
acquaintance model derived from the interaction
model and the agent model should document the
lines of communication between the agents. Gaia is
mainly concerned with how a society of agents
cooperate to achieve the system-level goals, and
what is required of each individual agent in order to
do this. However, the methodology says nothing
about how an agent should accomplish its services,
because it will depend on the particular domain.
Gaia relies on an organizational viewpoint and uses
a mostly top-down approach based on a progressive
decomposition of behaviors, but it does not provide
any direct, explicit representation of such structures,
for example through some kind of organizational
patterns. We think these shortcomings may be better
exploited if the design process is guided by
technologies such as architectural styles and
frameworks, in order to simplify the development of
more reusable and adaptable multi-agent
applications.

Presently, there is a diversity of generic multi-agent
models and architectures, ranging from agent
platforms for the development of applications (e.g.,
Madkit [Gutknecht97], Swarm [Minar96]) and
specific environments for mobile agents (e.g.,

Aglets [Lange98], Ajanta [Tripathi98]), to more
elaborated object-oriented multi-agent frameworks
(e.g., Jafmas [Chauhan97], Jafima [Kendall99],
BrainstormJ [Zunino00]). Some of them also
support visual environments (e.g., Zeus [Nwana99],
AgentBuilder [Reticular99]).

These tools provide different agent facilities, and
often need a quite extensive tailoring to build agent
applications. Nonetheless, the development of MAS
is still a technically difficult task. One of the
principal barriers is the absence of general
agreement about what it is really meant by terms
such as agent models, agent architectures and agent
frameworks. Moreover, usually the vocabulary used
by the agent community for frameworks and
architectures is quite different from the one used by
the object community. Therefore, we believe it is
necessary to conciliate these views, because this
misconception clearly affects both the widespread
adoption of multi-agent technology and its
integration with object-oriented techniques as well.
In the following sections we introduce a design
approach based on the notion of proto-frameworks,
aiming to provide an intermediate stage in the
transition from abstract agent models to agent
implementations through object-oriented
frameworks.

Requirements

Roles Model
It identifies the key
roles in the system,
where a role can be

viewed as an abstract
description of an entity

function

Interactions Model
It represents the

dependencies between
roles. There is a set of
protocol definitions,
one for each type of

role interaction

Agent Model
It documents the

various agent types
that will be used in the
system, and the agent

instances that will
realice these agent-

types at runtime

Services Model
It identifies the

services associated
with each agent role,

and specifies the main
properties of these

services. A service is
an agent function

Acquaintance Model
It defines the

communication links
that exist between

agent types. It do not
define what messages

are sent/received

A
N
A
L
Y
S
I
S

D
E
S
I
G
N

Abstract concepts
Roles

Permissions
Responsibilities

Protocols
Activities

Liveness properties
Safety properties

Concrete concepts
Agent Types

Services
Acquaintances

Abstract notions are those used during analysis to conceptualize the system, but they do not necessarily have
any direct realization within the system. Concrete notions, in contrast, are used within the design process, and
will tipically have direct counterparts in the runtime system

Requirements

Roles Model
It identifies the key
roles in the system,
where a role can be

viewed as an abstract
description of an entity

function

Interactions Model
It represents the

dependencies between
roles. There is a set of
protocol definitions,
one for each type of

role interaction

Agent Model
It documents the

various agent types
that will be used in the
system, and the agent

instances that will
realize these agent-

types at runtime

Services Model
It identifies the

services associated
with each agent role,

and specifies the main
properties of these

services. A service is
an agent function

Acquaintance Model
It defines the

communication links
that exist between

agent types. It does not
define what messages

are sent/received

A
N
A
L
Y
S
I
S

D
E
S
I
G
N

Figure 1. Example of analysis and design models in the Gaia methodology [Wooldridge00]

3. Framework Design using Proto-
Frameworks

Object-oriented frameworks represent, perhaps, the
current most successful technology to achieve both
design and code reuse [Fayad97]. The benefits of a
framework [Johnson97, Fayad99] are that it
provides a general and reusable skeleton of classes
and behavior patterns for a given domain, and
relying on this support new application can be
developed in a flexible and direct way, with
additional savings of time and design effort.
However, there is a growing feeling in the software
community that this technology is not enough to
cope with the problem of building highly reusable
and adaptable software systems. On one hand, all
these benefits need to be enforced during framework
design. On the other hand, the influence of quality
factors such as flexibility, extensibility, or
interoperability, imposes additional conditions to the
process. These properties are more inherent to the
software itself than to the application domain.
Therefore, alternative methods to overcome these
problems are becoming more and more important
and necessary. Our approach to framework
development can be seen not as new method, but as
a bridge between architectural styles and object
orientation. The problem relies on how to break the
tradeoff imposed by a pure functional
decomposition versus a pure object-oriented
decomposition of a problem. In our opinion, the
notion of architectural materialization is a key
aspect that can lead to the development of better
frameworks, but also powerful proto-frameworks.
These ideas are further explained in subsequent
sections.

Architectural materialization

Architectural styles can be used to derive a domain-
specific software architecture, that is a software
architecture that fits the requirements of a given
domain prescribing a generic solution for such
domain. An architecture derived from architectural
styles, however, does not always prescribe an
object-oriented computational solution. According
to [Shaw96], object orientation is considered as a
particular architectural style. The style only
indicates the usage of objects as architectural
components and messages as connectors.
Nonetheless this view, does not recognize the fact
that object orientation can be a very convenient
technology to implement, or materialize, different
architectural styles.

By materialization we mean the process of
producing a concrete computational representation
from an abstract description using a given
technology. Taking into account this aspect, the
proposed approach is based on the notion of object-
oriented materialization of domain-specific
architectures derived from domain models. Our
view differs from other approaches to object-
oriented architecture design using patterns like
[Buschmann96], in that these approaches intend to
provide an object-oriented description of the
architectural models, which not always can be
directly mapped to a particular situation.

Our approach to framework development is depicted
in Figure 2. Starting from an abstract domain model
and one or more architectural styles (e.g. pipeline,
blackboard, hierarchical layers, etc.) adequate for

the domain, we can obtain a first architectural
materialization of the domain. This materialization
is driven, essentially, by non-functional
requirements that predominate in that domain.

The right formalization of this architecture can bring
the possibility of early verification of essential
properties that the architecture is supposed to
satisfy. After that, the process should continue by
refining and translating that organization to an
object-oriented world. In such activity, design
patterns may be applied to obtain a flexible design
that is appropriate for a framework. Simultaneously,
specific methods must be defined for representing
the application domain control flow. In such
process, some points that can not be generalized
must be traduced in abstract and hooks methods.

Domain Model Architectural
Styles

Architectural
Materialization

Domain Specific
Architecture

O-O Materialization

Framework

O-O Design
Patterns

Figure 2. Materialization approach to framework
design

The process of refinement of an architectural model
to produce a first architectural design of the
application can be obtained through one of the
following ways:

• Direct Mapping: Application requirements
match the constraints prescribed by the
pattern, so architecture components can be
directly derived from the model.

• Constraint Relaxation: Some constraints
can be relaxed due to specific
characteristics of the application that do not
require the complete functionality
prescribed by the pattern. In this case,
several components can be combined in a
single component.

• Constraint Strengthening: In some cases,
one or more non-functional requirements
are more important or crucial than others.
Depending on the type of requirement, the
resulting mapping varies. In case of
adaptability, for example, a given
component predicted by the model can be
split in several components. In case of
efficiency, the predicted functionality of a
component can be relaxed to behave more
efficiently.

Functionality Attribution and Proto-
Frameworks

Normally, the choice of architectural styles gives a
set of abstract components and patterns of
communication among them. But, depending on the
styles, the specific number of components and their
function will obviously vary according to the
functionality implemented by the framework. In
this process, also the interface of each resulting
component is defined, as well as the data flow
among the components.

This functionality attribution, however, can lead to
different frameworks according to the design goals
and, particularly, the specific target domain. That is,
if we are designing a framework for Enterprise
Quality Management Systems (EQM) probably one
or more components will be in charge of managing
structured documents, for example. A class
hierarchy, implementing the different types of
documents and the functions applicable to them will
probably materialize these documents.

On the other hand, when the target domain is a
paradigm of software organization, as MAS for
example, the materialization of the architecture can
produce an object-oriented framework
implementing the mechanisms needed to support the

concepts of the paradigm. In this case, there are two
alternatives:

• Service-oriented frameworks: The
designers can decide to materialize a
framework oriented to provide specific
functional services for the domain, which
can be used by specific applications in a
mostly black-box fashion, as is the case of
Madkit [Gutknecht97], for example.

• Proto-frameworks: The designers can
decide to materialize a framework
implementing the essential abstractions of
the domain, providing all the infrastructure
needed for cooperation and communication
of each component type. In this case, the
framework provides very abstract hooks to
map specific domain components into a
class hierarchy in a white-box fashion. This
mapping can produce a specific
application, but more important yet, it can
produce new domain-specific frameworks
that adopt the underlying architectural
model. In other words, a proto-framework
represents an object-oriented
materialization of a software architecture
derived from non-object-oriented
architectural styles.

There is subtle difference between both alternatives.
In the first case, the framework does not necessarily
provide structured guidance to build, or derive,
specific applications or even frameworks for the
target domain. In the second case, a proto-
framework provides essential abstractions to derive
new applications or frameworks by inheritance from
the proto-framework classes. This aspect represents
an important advantage because the designer has to
concentrate on how to map specific entities to the
proto-framework abstract entities which provide the
essential architectural behavior and how to
implement the specific functionality of this
framework.

The next section presents the main characteristics of
Bubble, an object-oriented proto-framework that
showed the feasibility of the approach.

4. The Proto-Framework Bubble

Bubble is a framework implemented in Java
[DiazPace00], originally conceived and designed to
build multi-agent systems for the simulation
domain. The current design of Bubble is the result of
several design iterations, essentially due to strong
flexibility limitations imposed by the initial fully

object-oriented approach used for its design. After
realizing the problem, we shift our attention to a
pure architectural view of the problem, and we
chose an implicit invocation style as the main design
driver for the architecture, and to model domain
entities (agents) separating state from actions using
the notion of tasks. The interaction among these
agents, that we call bubbles, is performed through
events that they produce and receive. Bubble agents
are equipped with associated sensors (like filters)
that are registered to listen to certain kinds of events
with a defined criterion of relevance (local, by
group, by event strength, regional, etc.).

The behavior of any bubble agent is defined through
tasks using a condition-action style, i.e. a task is a
module composed by a series of actions to be
executed by the agent (action part) when certain
conditions are fulfilled (condition part). Conditions
can be related either to the internal state of the agent
or the incoming events. The framework also admits
bubble agents containing groups of other agents, and
tasks composed by groups of predefined tasks. In
this way, complex interactions, structures and
behaviors can be modeled combining primary
blocks.

Figure 3 shows a diagram of the underlying
framework architectural model, illustrating a typical
event flow between bubble agents in a container and
the role that sensors play in this process. Note that
the outgoing events produced by an agent D are
propagated only if the agent is attached to a
container, but this relationship is not compulsory.
When a agent receives an incoming event (the
agents B, C and container, in the example), the
processing depends on the current tasks associated
with the agent.

Architectural Views

The Bubble architecture can be described from three
different views: structural organization,
communications, and agent tasks. The next
subsections briefly describe each of these views.

• Structural organization: Bubble was
designed pursuing the goal of having
uniform decomposition. By uniform
decomposition [Bass98] we mean the
operation of separating a large component
into two or more smaller ones, limiting the
composition mechanisms to a restricted
uniform set. Thus, integration of
components and scaling of the system as a
whole is achieved having besides
modifiability and reusability properties.
The aim is to represent the agent
organization with a hierarchy of abstraction
levels: bubble agents composed by other
agents, which in turn are composed by
others, and so on. The same structure is
used to handle incoming and outgoing
events (see next section about
communications).

• Communication: Communications among
different components in Bubble are
performed through events. Every agent can
be linked to a container agent, and this
container is engaged to collect and dispatch
incoming events to the sensors registered
inside it. As we explained in a previous
section, sensors act like filters and transmit
only interesting events to their associated
agents. An implicit-invocation mechanism
[Shaw96] is used to achieve these
notifications. The container agent is in

Agents

ContainerAgent eventsRegistry

Sensors

Event

1. Agent D sends an event E, as a result of
executing some task

4. Event E is
also received by
the container (it
is an agent itself)

2. The container catches event
E, and dispatches it to the
sensors interested in that event

5. Agent A does not
receive event E, because
its sensor is not registered
to listen to those events

A

B

C

D

6. Sensors corresponding to agents B
and C perceive event E, and pass it to
their associated agents

3. Sensors hear events in
a certain neighborhood
within the container

Figure 3. Conceptual model of Bubble´s architecture

charge of the event flow management
among all the agents. An event represents a
notification of any change occurring in the
system. Sensors are responsible for
reception and conditional transmission
(filtering) of events. Container agents
deliver events received from the bubble
agents to the sensors. To illustrate this
interaction, let’s suppose we are modeling
a market where buyers and sellers are free
to perform transactions, any customer
interested in buying certain items needs to
specify a purchasing criterion and enroll
itself with the market to listen to bids. In
this context, the market can be a container
agent, both sellers and buyers are simple
agents, and the specific purchasing
criterion corresponds with a sensor. Every
time a new offer appears, our customer will
be notified about that situation only if the
offer fulfills its purchasing conditions.

• Behavior: All the agents of the framework
can perform a set of tasks. A task is
composed by one or more procedures with
a set of input and output parameters. Tasks
are triggered by predefined conditions,
which can be related to the internal state of
the agents or incoming events. In this way,
the agent behavior is conceived as a set of
competing tasks, where only one task is
active at the same time [Drogoul92]. When
a selected task is executed, it can generate
either outgoing events and/or changes

affecting the agent state. Figure 4 provides
a picture of such situation. Different tasks
can be dynamically assigned to a agent,
and they compete to execute according to
their priorities and activation requirements.

Object-Oriented Materialization of the
Architecture

The process of materializing the architecture of
Bubble on an object structure was accomplished in a
stepped way, firstly we produced a preliminary
design for the architecture and then we refined it
including several design patterns [Gamma94] in
order to provide more flexibility to the framework.

The initial design comprised the classes mapping
the main components of Bubble, namely: bubble
agents, tasks, sensors and events. The different types
of entities defined in the architecture (agents,
composed agents and container agents) appeared in
the framework as subclass relationships,
representing the extension in capabilities (behavior)
present in such entities. In this way, a bubble agent
models the basic entities of the framework (class
Agent), a composed agent models a group of entities
(class ComposedAgent), and a container agent, in
turn, represents a set of entities and sensors working
together within a container agent (class
ContainerAgent). Sensors were directly
implemented as wrapper objects (class Sensor), and
their filtering criterion was coded as an abstract
method. Finally, tasks were defined as separated

Task 1

Task 2

Task 3

Priority

Current task

Execution of
primitive
actions

Environment

Sensing and
filtering

Outgoing events

External events

Incoming events

AGENT

Internal
state

Task A {Simple}

If (conditions) then
action 1
action 2

…
action k

Task B {Simple}

If (conditions) then
action 1
action 2

…
action k

AGENT

Task C {Composed}

Task C1 Task C3

Task C2
Task C4

Figure 4. Competing tasks

objects that can be attached with different entities
(class Task). Again, both the task body and the
conditions to activate it were specified as abstract
methods. To execute their tasks, bubble agents have
a general implementation of the competing-tasks
algorithm using template methods. However,
developers are not constrained to this particular
style of execution, and they can define other
execution mechanisms according to specific needs.
Event and implicit invocation features were spread
out through agents and sensors. Any common agent
defines entry and exit methods for events, whereas
container agents implement mechanisms for event
registry and dispatching.

Following the design approach, once we outlined a
first abstraction of the Bubble framework, we
proceeded to improve it with a more detailed design.
This step involved, for instance, the splitting of

behavior in some classes, class refactorizations, and
the application of several design patterns.
Essentially, the purpose of all these activities was to
offer more possibilities of reuse and flexibility at
framework level. The following reports on some of
the refinements.

Bubble agents were restructured to permit a better
separation between behavior interfaces and
implementation of these behaviors. Basically, we
used Java interfaces to define the abstract behavior
of the agents (interfaces AbstractAgent and
AbstractComposedAgent), and also included some
concrete implementations of these interfaces
(classes Agent, ComposedAgent, and
ContainerAgent) that can be used by developers as
default components. Additionally, we added a new
interface to handle group interactions and roles
(interface AbstractAgentGroup). In the same way,

AgentEventS ender

sendAgentEvent (AgentEvent)

<<In te r face>>

AgentEventL is tener

updateAgentEvent(AgentEvent)

<<In te r face>>

DataHandler

hasI tem(Str ing) : boolean
get I tem(Str ing) : Object
removeItem(Str ing)
set I tem(Str ing, Object)

<<In te r face>>

Abs t rac tComposedAgen t

addAgent (Abs t rac tAgent)
removeAgent (Abst rac tAgent)
getChi ldren() : Enumerat ion

<<In ter face>>

AgentEventHandler

handleAgentEvent(AgentEvent)

<<In te r face>>

ComposedAgent {abs t rac t }
ch i ldren : Vector

addAgent (Abs t rac tAgent)
removeAgent (Abst rac tAgent)
getChi ldren() : Enumerat ion

AgentGroupObservable

addGroupObserver(Abst ractAgentGroup)
removeGroupObserver(Abst ractAgentGroup)
updateGroups(Abst rac tAgent , Ob jec t)

<<In te r face>>

Abs t rac tAgen tGroup

def ineRoles()
at tachRole(A bstractAgent , St r ing)
detachRole(Abst rac tAgent , St r ing)
agentsWi thRole(St r ing) : Enumerat ion
getRole(Abst ractAgent) : St r ing

<<In ter face>>

Conta inerAgent {abst ract }

ex terna lSensors : Vec tor
d ispatch ingL is t : Vector

addRegis t ry(Sensor)
removeRegist ry(Sensor)
ge tSensors (Abs t rac tAgent) : Vec to r
handleAgentEvent(AgentEvent)
d ispatchAgentEvent (AgentEvent)
d ispatchAl lEvents()

Task {abst ract }

owner : Abs t rac tAgent
currentPr ior i ty : double

run(AgentEvent)
entry(AgentEvent)
body(AgentEvent)
ex i t (AgentEvent)
consumeCurrentEvent(boolean)
sendAgentEvent (AgentEvent)
d ispatchAgentEvent (AgentEvent)
setCurrentPr ior i ty(double)
getCurrentPr ior i ty() : double

Abs t rac tTask

active()
run()
getCurrentPr ior i ty()
isEnabled()

<<In te r face>>

Abs t rac tAgen t

run()
addSensor(Sensor)
removeSensor(Sensor)
not i fySensors()
addTask(Task)
removeTask(Task)
getTask() : Task

< < Interface>>

0..*0. .*

+owner

Sensor {Abs t rac t }

agent : Abs t rac tAgent

{abst ract } agentChanged(Object ob j)
se tAgent (Abs t rac tAgent)
updateAgentEvent(AgentEvent)
processAgentEvent (AgentEvent)
{abstract } isAgentEventFi l tered(AgentEvent) : boolean

0..*0. .*

+updater

AgentEvent

category : in t
type : in t
source : Abs t rac tAgen t
message : S t r i ng
arguments : Vec to r
t imeStamp : l ong

setArgument (in t , Ob jec t)
getArgument(in t) : Object
getT imeStamp() : long
setT imeStamp(long)
getMessage() : S t r ing
se tMessage(St r ing)
ge tSource() : Abs t rac tAgent

Agent {abst ract }

incomingEvents : Vec tor
manager : AgentEventHandler
sensors : Vec to r
tasks : Hash tab le
enabled : boolean

init ial ize()
addSensor(Sensor)
removeSensor(Sensor)
not i fySensors(Object)
sendAgentEvent (AgentEvent)
updateAgentEvent(AgentEvent)
setManager(AgentEventHandler)
runTask(Str ing)
runTasks()
se lec tTasks() : Enumera t ion
addAgentEvent(AgentEvent)
{abstract} run()

0. .1

+wrapper

0. .1

0..*0. .*

Figure 5. Bubble Class Diagram

we split a task into an interface and a concrete
implementation (interface AbstractTask and class
Task). Regarding events, we moved this
functionality to interfaces (interfaces
AgentEventSender, AgentEventListener, and
AgentEventHandler), in order to decouple event
handling from the entities (agents) manipulating
them.

All the agents supported by the framework were
structured using a Composite pattern, this provides a
uniform treatment of these entities favoring the
adding/replacement of agents into the system. For
example, we can initially have a container with
simple agents inside, and then replace certain agents
by other composed agents with a low influence on
the overall design. We discovered that, sometimes,
as agents change their respective sensors need to be
updated to reflect these changes. Thus, we
introduced an Observer pattern between agents and
sensors to synchronize changes.

As we mentioned above, the execution of tasks in a
given agents follows a competing-tasks scheme.
This aspect was modeled using a Strategy pattern,
so that tasks implement specific behaviors that can
be dynamically associated with agents. Regarding
tasks themselves, its internal structure follows a
Template Method pattern to specify the required
steps of processing a task should involves. Finally,
the management of events in the framework acts
like a Mediator pattern, this makes easier to define
complex interaction protocols between agents and
confers enough flexibility to update them.

On the whole, we can say that all these points of
variability improved significantly the framework
design while preserving the original architectural
model. To illustrate these concepts, the following
section briefly describes a multi-agent framework
development based on the Bubble infrastructure

5. Case-Study: A Multi-Agent
Framework for Enterprise Quality
Systems

InQuality is a framework for Enterprise Quality
Management systems (EQM) derived from the
proto-framework Bubble, developed by Analyte Lab
Information Technology. Essentially, InQuality is a
framework for building structured document-based
applications which is intended to support different
types of control quality applications from, for
example, ISO9000 compliance document
management systems up to Laboratory Information

Management Systems (LIMS).

Analyzing the different variants of the domain and
having into account the dynamic configurability and
flexibility requirements, we concluded that the
Bubble architecture could fit very well these
requirements and, simultaneously, serve as a guide
for the development team to map the required
functionality into computational components.
Following this idea a first version of the framework
was designed in a surprisingly short period.

The design process mainly involved two phases:

• Mapping of the functional specification to
Bubble components. This phase involved
the decision of what components would be
mapped to agents, associated tasks and
event types.

• Materialization of functional components
through the design of the subclasses that
implement the specific functionality of the
EQM domain.

After the first iteration the design was evaluated,
trying to identify potential bottlenecks and
architecture tradeoffs regarding security and
efficiency. The final architecture is depicted in
Figure 6. Shaded components correspond to Bubble
instantiations, whereas non-shaded ones, excepting
the blackboard, correspond to normal object models
that mainly provide static specifications for the rest
of the components. Some components, like the
blackboard, were incorporated to satisfy certain
domain specifications. This aspect shows how the
Bubble-based architecture can be complemented
with another architectural style, without loosing the
advantages of having an architectural guidance for
the rest of the framework design.

Basically, InQuality is composed of the following
components:

• Message Server: The message sever
implements a blackboard, accepting
messages from both external and internal
agents. External agents are agents which
may reside outside the application server
space, and may be connected via HTTP, to
the server. This can be browsers,
Instrument Interface Agents and External
Application Agents. Taking into account
that many messages are addressed to
specific users, the blackboard is able to
maintain a persistent version of messages
until the involved users log into the system.
This capability is especially important for
the workflow component.

• Role Manager: Every user of an InQuality
system is represented by a Bubble agent.
Tasks associated with these agents
determine the allowed behavior for the user
depending on his/her role. These
capabilities are represented by a role
model, which defines the different rights of
every type of user. Roles are also
represented by agents able to dynamically
activate allowed tasks to every new logged
user. This is uniformly done by subscribing
to events that may be of their interest and
acting according to certain rules that
determine the activation of a given task.
These can be security rules, such as
allowing a particular user to edit some
sample information if the sample belongs
to certain area of the plant or is in a certain
state. It uses the Security Model to access
the rules and actions allowed for a
particular Role and Participant.

• Page Builder: This agent is responsible for

converting documents, frames and
interface objects to a representation
acceptable for a given browser (such as
HTML or XML+XSL). It isolates the
Application Interface Model from the
details required to convert to the different
HTM dialects.

• Event Notifier: Participants and Roles,

and other agents can decide that they are
interested in certain messages (events) and
want to be notified if (and only if) certain
(user-defined) rule is met. These rules are

expressed in a scripting language and
evaluated by the Notification component,
which then notifies the interested agent. So,
we can say that this component acts as an
event filter.

• Clock and Scheduler: It is usual for

documents, tests, samples and activities to
have time limits imposed on them. For
example, if a particular sample has not
been collected before an hour of its
specified collection time, it will not be
collected at all. A certain workflow
activity, such as approving an ISO 9000
document for distribution, may have a
given deadline. Agents will register this
deadline with the Clock component, and
will ask this component to send them a
particular event when the time arrives.

• WorkFlow Manager: Almost every

enterprise framework heavily relies on a
workflow management system [Fayad00],
and also this is the case of InQuality.
Different documents, samples, test types,
etc., may require different collection,
processing, revision and approval cycles.
This means they will have different
associated workflows. This component is
responsible for initiating, tracking and
ending each of this workflow instances,
also notifying roles and participants when
they should perform a certain activity. This
component represents an interesting
application of Bubble's facilities, and it will
be described in detail in the next section.

Message Server
(persistent and non persistent messages)

Web Server
Servlet

User Interface Agent
(browser)

Role Manager

Page Builder

Security Model Application Interface Model

Specif ic Domain Model
(LIMS, EQM...)

RDBMS Doc DB (XDB) File store ...

Document Model
Workf low
Manager

Message flow
Object method invocation

Network

Figure 6. Architectural Scheme of InQuality

• The Roles & Security Model: This is an

object model which acts as a repository
used by the Role manager and the system
configuration tools to define and get/set
security attributes on the user interface and
specific domain objects. Generally
speaking, each application document and
attribute may have security rules imposed
for each role or user.

• The Application Interface Model: This

object model acts as a repository for all
user interface information associated to a
particular application, such as menus,
frames, topic frames, button frames, etc.
The Page Builder component uses this
information to translate entities in this
model to a browser dependent
implementation. Generally speaking, it
defines a particular application and the way
it modifies objects in the specific domain
model.

• The Specific Domain Model: This is the

"real" object model, associated to a
particular domain, such as the Lab
Information System (LIMS), or the
Entreprise Quality Management System
(EQM). The objects modeled here are in
fact "passive" wrappers for the database
objects. Certain "business rules" and "state
change" rules may also be included here.
We refer to the objects belonging to this
component as passive, because an

associated Bubble agent manages the
object's entire autonomous behavior (see
Figure 7). In this way, a better separation
of concerns is achieved leaving for the
agent the dynamic control of the object
behavior through Bubble tasks 1.

The Workflow and Role Manager Components

In this section we describe in more detail the design
of the workflow component of InQuality. This
component is an example of how the mapping to the
Bubble architecture simplified the implementation
of a complex component for workflow management
and how it relates to the role manager.

Usually, a workflow represents a graph constituted
by a set of activities (nodes) and paths (arcs)
connecting these activities, related to the specific
tasks to be developed in a work process over a
product. In many cases, workflow activities are
modeled using some variants of Petri-nets, and they
are enacted by a workflow engine. Under this
approach, this engine becomes, almost unavoidably,
in one of the main functional components of an
enterprise framework. InQuality, however, uses a
different approach.

1 Details of this core component can not be
described in detail due to academic-industrial
confidentiality agreements.

An agent associated to object A

Task

Domain
Object A

Black Board (persistent and non
persistent messages)

Notification Manager
(acts as an event filter & router)
applies Filter Rule to Input Event

and sends Output Event(s) to Observer(s)

Monitors act as interface drivers to external
systems. Whenever they detect any change of
interest they generate a BlackBoard message

.

Event flow
Object method invocation

email
RDBMs

Exchange Files
Other DBs

Figure 7. InQuality mapping of domain objects and agents

In the InQuality case each document type has an
associated workflow. Each workflow is produced
through a Petri-net-based graphical notation using a
graphical editor. The editor produces an
specification of the net that will be used to configure
the specific workflow instance. But, instead of
having a centralized workflow engine, every
particular workflow instance (or workflow process)
associated with a document is represented as a
container agent. Each activity within the workflow
instance is represented as a single agent (see Figure
8).

The workflow instance agent encapsulates the
knowledge related to the structure of the particular
workflow and to create the corresponding agents
and associated tasks that will implement the
workflow. Activity agents listen to events generated
by the execution of previous activities and reacts
when these events arrive. Tasks associated with
activity nodes of the workflow will produce
messages directed, through the blackboard
component, to the specific role or participant agent
in charge of executing such activity.

When the "end of activity" event arrives, the
corresponding activity agent evaluates each of the
rules associated with each path originated from it,
and generates the corresponding events that enable
the next activities in the workflow. There are two
workflow-specific cases of activity agents, AND
activities and OR activities, which are used to
coordinate the workflow process.

An AND activity agent waits until all the events
coming from its upstream nodes have arrived (that
is, the events sent by tasks T1 and T2) and then
announces its own event to activate the next task
(T3). In this way it acts as a synchronization node,
not allowing task T3 to start until both tasks T1 and
T2 are completed. The OR agent announces its
event if any of its registered event has arrived, and
ignores all other incoming events. So, if either task
T1 or task T2 is completed, then task T3 will be
started. By ignoring all other events after the first
one, it can assure the next task (T3) is not started
twice. These situations are shown in Figure 9.

This scheme greatly simplifies the implementation
of the workflow management component by
mapping it to the simple conceptual model of agents

Document

Workflow Instance
(Container Agent)

WorkFlow Activities
(Activity Agents)

Changes

Manager
User

Technician
User

Pending Activities

Figure 8. Relationship among Workflow Activities, Roles and Participants and Documents

T1

T2

T3

AND

T1

T2

T3

OR

Figure 9. AND and OR activity agents

and tasks. The dynamic nature of the task scheme
makes easy to configure a Participant agent with the
tasks that implement the activities it must execute.
The Application Interface component is in charge of
customizing the user interface of each specific
participant to show the activities it is expected to
accomplish, by simply asking the Participant Agent
about its current tasks.

This organization is also used to control the access
to system function for each user according to its
role. In this way, a given user can only see
authorized functions, which are mapped from the
interface to the task that implement the selected
function. For example, some type of user can only
edit some parts of a document or other can only
consult a document.

6. Lessons Learned

From the development of InQuality, we collected
several experiences that are currently driving the
development of new versions of the framework. One
of the lesson learned was that, besides the fact that
framework design is a difficult task, the design of a
complex enterprise framework requires more than
domain expertise. This kind of frameworks can be
so complex that they require the capacity of
combining many computational factors that
transcend the domain itself. In this sense, to have a
clear architectural guidance, as the one provided by
the Bubble architecture, became a stronger key than
to have an elegant but complex framework from
which start the development.

The transition to object-oriented development, as
several renowned authors have highlighted, requires
more than just to know about object-oriented
programming and design concepts [Goldberg95,
Fayad98]. The provision of technology-independent
architectural guidance to organize the development
is almost indispensable. This last fact impacts
positively in providing a smooth technology
transition for a relatively inexperienced
development team. In this case, the proto-
framework concept represents an additional help to
facilitate the reuse of object-oriented architectural
materialization.

As regards the framework, there are good reasons to
state the appropriateness of Bubble to assist multi-
agent development. This can be traced from the
intrinsic characteristics of MAS . As it is argued by
[Jennings99], it is natural to modularize complex
systems in terms of a number of related sub-systems
organized in a hierarchical fashion, where the

components of each sub-system work together to
deliver a given functionality. As these systems get
more complex, it is usually impossible to know
about all the potential links in advance. The
unpredictable nature of the relationships between
components makes it difficult to deal with these
kind of systems using just conventional object-
oriented design techniques. In such cases, the policy
of deferring to runtime decisions about component
interactions provides a more realistic view. The
power of agent organizations comes from the ability
of agents to join groups, and by doing so, to acquire
new abilities that they would have not obtained
otherwise [Gutknecht97] All the aforementioned
concepts are somehow reflected in the design of
Bubble. Moreover, the framework also extends this
uncoupling to behavioral issues in the form of tasks.
In this way, problems associated with the coupling
of components are reduced and adaptability is
improved. Furthermore, it promotes delegation
models, that is a component (agent) can generate
requests for assistance to other components if it is
asked to carry out some specific task it cannot solve
by its own means.

7. Conclusions

In this paper, we have reported on our experience
with the design of frameworks, and particularly the
development of multi-agent frameworks. In this
context, we introduced a new approach based on the
notions of architectural materialization and proto-
frameworks. We believe that the benefits of the
approach are twofold. On one hand, it provides a
smoother transition between architectural styles and
application frameworks by inserting an intermediate
stage of architectural materialization. On the other
hand, and perhaps more significantly, the notion of
proto-frameworks rises a new challenge regarding
multi-agent development.

A proto-framework makes explicit certain essential
architectural choices by means of object-oriented
constructs, which can serve as basis for the
development of traditional frameworks. Moreover,
the tradeoffs between non-functional requirements
selected by the framework developers can determine
different alternatives of building frameworks on top
of proto-frameworks, and these alternatives can be
evaluated using the techniques inherited from the
architecture-driven design approach.

We have also presented an example of a proto-
framework, named Bubble, which relies mainly on
an architecture composed by modular entities,
associated tasks and events. According to the

proposed approach, the initial conceptual
architecture was mapped to an object-oriented
framework and empowered to fulfill reusability and
adaptability requirements. The resulting framework
(i.e., the proto-framework) retains the benefits of the
original architectural model. The implementation of
an EQM framework on top of Bubble illustrates how
new application frameworks can be derived from
proto-frameworks, and also provided a valuable
experience about industrial application of our
architectural materialization approach. Another
important aspect of the work was that the
architectural guidance provided by Bubble much
helped a team of developers with few or no
experience in object-oriented design to produce an
enterprise multi-agent framework that can be
adapted to a broad range of applications.

Finally, this work hopes to contribute to the still
incipient field of agent methodologies and design of
MAS. We think that the ideas and results presented
are worth to be deeply explored in order to obtain
quantitative evidence of the benefits of combining
object-oriented techniques and multi-agent systems.

Acknowledgements

The authors whish to thank Edgardo Belloni and
Alfredo Teysyere for their efforts in the
development of the first academic applications of
the approach, and also to Alejandro Zunino for his
valuable suggestions regarding multi-agent issues.
Likewise, they are grateful to Mario Zito and the
Analyte development team for their support and
patience, during the project, as well as the critic
enthusiasm that helped too much to improve the
final results.

References

1. [Bass98] Software Architecture in Practice. L.
Bass, P. Clement, and R. Kazman. Addison-
Wesley. 1998

2. [Bradshaw97] Software Agents. J. Bradshaw.
AAAI Press, Menlo Park, USA, 1997.

3. [Burmeister96] Models and Methodologies for
Agent-Oriented Design and Analysis. B.
Burmeister. In Working Notes of the KI´96
Workshop on Agent-Oriented Programming
and Distributed Systems. K. Fisher (Ed.), 1996.

4. [Buschmann96] Pattern-Oriented Software
Architecture. A System of Patterns. F.
Buschmann, R. Meunier, H. Rohnert, P.

Sommerlad and M. Stal John Wiley & Sons.
1996.

5. [Campo01] Developing Object-Oriented
Enterprise Quality Frameworks using Proto-
Frameworks. A. Díaz Pace, M. Campo and M.
Zito. Technical Report RR001-2001, ISISTAN
Research Institute, Universidad Nacional del
Centro de la Provincia de Buenos Aires.
February, 2001.

6. [Chauhan97] JAFMAS: A Java-based Agent
Framework for Multiagent Systems
Development and Implementation. D. Chauhan.
PhD thesis, ECECS Department, University of
Cincinnati, 1997.

7. [Demazeau91] From Reactive to Intentional
Agents. In Decentralized Artificial Intelligence
2, Y. Demazeau and J. P. Müller (Eds.), pp. 3-
14. Elsevier/North-Holland, Amsterdam, 1991.

8. [DiazPace00] Bubble: A Framework for
Simulation of Collective Processes. A. Diaz
Pace., F. Trilnik, A. Clausse, and M. Campo.
Technical Report, Isistan Research Institute,
Faculty of Sciences, Universidad Nacional del
Centro de la Provincia de Buenos Aires. 2000.
(In Spanish).

9. [Drogoul92] Multi-agent Simulation as Tool for
Modeling Societies: Applications to Social
Differentiation in Ant Colonies. A. Drogoul and
J. Ferber. In Proceedings of the 4th European
Workshop on Modeling Autonomous Agent
and Multi-agent World. Rome (Italy), 1992.

10. [Drogoul98] Applying an Agent-Oriented
Methodology to the Design of Artificial
Organizations: A Case-Study in Robotic
Soccer. A. Drogoul and A. Collinot.
Autonomous Agents and Multi-Agent Systems,
vol.1, 1, 113-129. 1998.

11. [Fayad97] Object-Oriented Application
Frameworks. M. Fayad and D. Schmidt.
Communications of ACM, Vol. 40, No. 10, pp.
32-38, October 1997

12. [Fayad98] Transition to Object-Oriented
Software Development. M. Fayad and M.
Laitinen. John Wiley & Sons. 1998.

13. [Fayad99] Building Application Frameworks:
Object-Oriented Foundations of Framework
Design. M. Fayad, D. Schmidt, and R. Johnson.
Wiley Eds. 1999.

14. [Fayad00] Enterprise Frameworks
Characteristics, Criteria and Challenges. M.

Fayad, D. Hamu, D. Brugali. Comunications of
the ACM, Vol. 43, NO. 10, October 2000.

15. [Finin97] KQML as an Agent Communication
Language. T. Finin, Y. Labrou, and J.
Mayfield. In Software Agents, AAAI Press,
Menlo Park, USA, 1997.

16. [Gamma94] Design Patterns, Elements of
Reusable Object-Oriented Software. E. Gamma,
R. Helm, R. Johnson, and J. Vlissides.
Addison-Wesley. Massachussetts, 1994.

17. [Garijo99] Multi-Agent System Engineering.
F. Garijo and M. Boman (Eds.). Proceedings
9th European Workshop on Modeling
Autonomous Agents in a Multi-Agent World,
MAAMAW´99. Valencia, Spain. June, 1999.

18. [Goldberg95] Succeeding With Objects:
Decision Frameworks for Project Management.
A. Goldberg and K. Rubin. Addison-Wesley.
1995

19. [Gutknecht97] Madkit: Organizing
Heterogeneity with Groups in a Platform for
Multiple Multi-Agent Systems. O. Gutknecht
and J. Ferber. Technical Report RR97188,
Laboratoire d'Informatique, de Robotique et de
Microelectronique de Montpellier, University
Montpellier II C 09928, France. December,
1997.

20. [Jennings99] Agent-Oriented Software
Engineering. N. Jennings. Proceedings of
MAAMAW´99, Valencia, Spain. June, 1999.

21. [Jonhson97] Frameworks = (components +
patterns). R. Johnson. Communications of the
ACM, theme issue on “Object-oriented
application frameworks”, M. Fayad and D.
Schmidt (Eds.), 40(10) pp. 39-42. 1997

22. [Kendall99] A Framework for Agent Systems.
E. Kendall, P. Krishna, C. Pathak, and C.
Suresh.. In Implementing Applications
Frameworks: Object Oriented Frameworks
atWork, M. Fayad, D. C. Schmidt, and R.
Johnson, Eds. Wiley & Sons, 1999.

23. [Lange98] Programming and Deploying Mobile
Agents with Java Aglets. D. Lange and M.
Oshima. Addison-Wesley, Reading, MA, USA,
September 1998.

24. [Lesser98] Reflections on the Nature of Multi-
Agent Coordination. V. Lesser. Journal of
Autonomous Agents and Multi-Agent Systems,
1(1), pp. 89-111, 1998.

25. [Minar96] The Swarm Simulation System: A
Toolkit for Building Multi-Agent Simulations.
N. Minar, R. Burkhart, C Langton and M.
Askenazi. Internal Research Report. June 1996.

26. [Nilsson96] Introduction to Machine Learning.
N. Nilsson. Draft. September 1996.

27. [Nwana99] A Toolkit for Building Distributed
Multi-Agent Systems. H. Nwana, D. Ndumu, L.
Lee and J. Collins. Applied Artifical
Intelligence Journal 13, 1, 129–186. 1999.

28. [Rao90] Deliberation and the Formation of
Intentions. A. Rao and M. Georfeff. Technical
Report 10. Australian AI Institute, Carlton,
Australia, 1990.

29. [Reticular99] AgentBuilder: An integrated
toolkit for constructing intelligent software
agents. Reticular Systems Inc. White Paper,
February 1999.

30. [Shaw96] Software Architecture, Perspectives
on an Emerging Discipline. M. Shaw and D.
Garlan. Published by Prentice-Hall. 1996.

31. [Sycara98] The many faces of agents. K.
Sycara. Artificial Intelligence Magazine, Vol.
19 Nro 2. 1998.

32. [Tripathi98] Ajanta- A System for Mobile-Agent
Programming. A. Tripathi, N. Karnik, M. Vora
and T. Ahmed. Technical Report, Department
of Computer Science, University of Minnesota,
Number TR98-016, 1998.

33. [Weiss99] Multi-Agent Systems, a Modern
Approach to Distributed Artificial Intelligence.
Edited by G. Weiss. MIT Press. 1999.

34. [Wooldridge96] Software Agents. M.
Wooldridge and N. Jennings. IEEE Review 17-
20. January, 1996.

35. [Wooldridge97] Agent-based Software
Engineering. M. Wooldridge. Technical Report.
September 1997.

36. [Wooldridge00] The Gaia Methodology for
Agent-Oriented Analysis and Design. M.
Wooldridge, N. Jennings and D. Kinny.
Autonomous Agents and Multi-Agent Systems,
vol.3, 3, 285-312. 2000.

37. [Zunino00] Brainstorm/J: A Framework for
Intelligent Agents. A. Zunino. Master's Degree
Dissertation. Universidad Nacional del Centro,
Instituto de Sistemas ISISTAN. April 2000. (In
Spanish).

