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Abstract 
 
Current trends in software development are increasingly reasoning about software applications in terms of 
multi-agent systems (MAS). However, the development of multi-agent applications is still a technically 
difficult task.  One of the main barriers is the lack of comprehensive design practices to move systematically 
from problem analysis and agent models to effective implementations.  This work describes a design approach 
to assist multi-agent development based on the notion of proto-frameworks, which proposes the 
materialization of agent models expressed in terms of architectural models into object-oriented counterparts, 
enabling then different implementation alternatives for multi-agent frameworks according to specific 
developers´ needs. 
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1. Introduction 
 
The adoption of the agent paradigm [Demazeau91, 
Sycara98, Weiss99] in software development 
necessarily involves news ways of conceiving 
software systems emphasizing properties such as 
modularity, autonomy, distribution and adaptability.  
As current software applications get bigger both in 
size and complexity, multi-agent systems  (MAS) 
appear as one of the most promising approaches to 
handle such continuous growing [Wooldridge96].  
The research in the field includes several lines of 
work regarding agent languages [Finin97], 
organizational models [Gutknecht97], learning 
[Rao90, Nilsson96] and coordination [Lesser98], 
among others.  Nonetheless, despite agent benefits, 
the development of multi-agent applications has 
been mostly homegrown [Bradshaw97] and it still 
requires a strong grasp of experience and design 
skills. This fact has somehow limited the application 

of MAS in practical cases. In contrast with 
conventional object-oriented technologies, MAS 
seem still not mature enough to provide 
comprehensive mechanisms that can be applied by 
developers in order to make a transition from 
problem analysis to design and implementation 
matters.  Therefore, it is reasonable to argue that a 
combination of agents with existent object-oriented 
techniques can contribute to provide computational 
models promoting better modularity and 
adaptability in software products. In particular, 
object-oriented frameworks [Johnson97, Fayad99] 
can play a key role in this context.  They can be 
useful means to express reusable designs and 
capture the essence of patterns, algorithms, 
components and architectures, even when some 
extension mechanisms may need to be considered in 
order to adapt frameworks to the agent 
requirements. 
 



In this work, we describe a design approach to assist 
multi-agent development based on the application of  
a method for object-oriented framework design 
which combines architectural styles [Shaw96, 
Bass98] with object-oriented concepts.  This design 
method relies on the notion of object-oriented 
materialization of software architectures derived 
from non-object-oriented architectural styles, but it 
is general enough to support the development of 
MAS as well.  The roots of this work  started with 
the development of a simple object-oriented 
framework called Bubble, initially designed for 
multi-agent simulation [DiazPace00]. This 
framework was used to support the implementation 
of several simulation applications on different 
domains, but the most relevant part of this process 
was that Bubble became also the basis for building 
other frameworks on top of it.  After several 
refinements of Bubble, we realized that the 
framework actually provides a set of domain-
independent architectural abstractions which made 
easier the mapping of domain concepts into 
computational components.  Additionally, the 
object-oriented representation enabled the reuse of 
essential mechanisms provided by the architecture 
in the same way a normal framework does. 
However, the mechanisms provided by Bubble are 
more oriented towards a generic architectural 
behavior than a generic behavior of domain.  This 
aspect made difficult to classify the framework into 
the different framework categories proposed by the 
literature.  Essentially, Bubble is a framework 
reused by inheritance (i.e., a white-box framework), 
but from a functional point of view it cannot be 
considered as a horizontal or service framework 
because it is not used by different framework. 
Instead of this, different frameworks can be derived, 
by inheritance, from Bubble through the mapping of 
domain components into proper Bubble 
components. For this reason, we refer to Bubble as a 
proto-framework [Campo01], that is an object-
oriented framework that provides the essential basis 
to build new frameworks that adopt the Bubble 
underlying architecture. As regards multi-agent 
systems, the notion of proto-frameworks can serve 
to the design of multi-agent applications by 
allowing the  materialization of agent models 
expressed in terms of architectural models into 
object-oriented counterparts, and then enabling 
different implementation alternatives for multi-agent 
frameworks according to specific developer needs. 
 
The paper presents our experience with 
development of the proto-framework concepts, and 
its application to the development of MAS. In 
particular, we take as case-study the development of 
an industrial framework for Enterprise Quality 
Management systems using multi-agent technology.  

The rest of the paper is organized into six sections. 
The first section discusses about frameworks and 
multi-agent development. The second section 
introduces the foundations of proto-frameworks.  
Then, the third section talks about the design of a 
particular proto-framework called Bubble. The 
fourth section describes the multi-agent case-study 
mentioned before. And finally, the last two sections 
present the lessons learned and the conclusions of 
this work. 
 
 
 
2. The Role of Frameworks in the 
Development of MAS 
 
The concepts of MAS are being spread everywhere.  
Many software applications are being viewed, more 
and more, as groups of autonomous entities 
collaborating with one another to collectively 
accomplish some goals.  This popularity has lead 
some authors to talk about a so-called multi-agent 
software engineering [Wooldridge97, Jennings99, 
Garijo99]. These arguments are based on the 
suitability of multi-agent models to better capture 
the intrinsic complexity of software applications 
composed by a large number of parts with many 
interactions among them.  However, as the research 
in the field is recently emerging, we cannot find too 
much quantitative evidence about these facts.  
Reality shows that the multi-agent paradigm still 
lacks of well-established design practices to move 
systematically from problem analysis and agent 
models to effective implementations.  In recent 
times, there has been a number of attempts to 
provide methodologies for MAS [Burmeister96, 
Drogoul98, Wooldridge00].  To exemplify these 
issues, let’s take for example the Gaia methodology 
[Wooldridge00], which proposes a set of models to 
deal with analysis and design of MAS.  The 
methodology aims the development of multi-agent 
applications through successive refinements of 
several agent models, but it remains neutral with 
respect to both the target domain and the agent 
architecture.  Figure 1 shows a summary of the Gaia 
models and its more important concepts. For the 
sake of our discussion, we will focus on the design 
phase proposed by the methodology, that is how to 
transform the abstract models derived during the 
analysis phase into more detailed specifications that 
can be directly mapped to agents.  Readers looking 
for more information can consult the original work 
[Wooldridge00]. 
 
Very briefly, the Gaia design process comprises 
three models: an agent model, a services model and 
an acquaintance model. Firstly, an agent model is 
created, identifying the agent types that will make 



the system work and the agent instances that will be 
generated from these types.  Then, a services model 
should specify the main services that are required to 
materialize each agent’s role.  And finally, an 
acquaintance model derived from the interaction 
model and the agent model should document the 
lines of communication between the agents. Gaia is 
mainly concerned with how a society of agents 
cooperate to achieve the system-level goals, and 
what is required of each individual agent in order to 
do this.  However, the methodology says nothing 
about how an agent should accomplish its services, 
because it will depend on the particular domain. 
Gaia relies on an organizational viewpoint and uses 
a mostly top-down approach based on a progressive 
decomposition of behaviors, but it does not provide 
any direct, explicit representation of such structures, 
for example through some kind of organizational 
patterns. We think these shortcomings may be better 
exploited if the design process is guided by 
technologies such as architectural styles and 
frameworks, in order to simplify the development of 
more reusable and adaptable multi-agent 
applications. 
 
Presently, there is a diversity of generic multi-agent 
models and architectures, ranging from agent 
platforms for the development of applications (e.g., 
Madkit [Gutknecht97], Swarm [Minar96]) and 
specific environments for mobile agents (e.g., 

Aglets [Lange98], Ajanta [Tripathi98]), to more 
elaborated object-oriented multi-agent frameworks 
(e.g., Jafmas [Chauhan97], Jafima [Kendall99], 
BrainstormJ [Zunino00]).  Some of them also 
support visual environments (e.g., Zeus [Nwana99], 
AgentBuilder [Reticular99]).  
 
These tools provide different agent facilities, and 
often need a quite extensive tailoring to build agent 
applications. Nonetheless, the development of MAS 
is still a technically difficult task.  One of the 
principal barriers is the absence of general 
agreement about what it is really meant by terms 
such as agent models, agent architectures and agent 
frameworks.  Moreover, usually the vocabulary used 
by the agent community for frameworks and 
architectures is quite different from the one used by 
the object community.  Therefore, we believe it is 
necessary to conciliate these views, because this 
misconception clearly affects both the widespread 
adoption of multi-agent technology and its 
integration with object-oriented techniques as well. 
In the following sections we introduce a design 
approach based on the notion of proto-frameworks, 
aiming to provide an intermediate stage in the 
transition from abstract agent models to agent 
implementations through object-oriented 
frameworks. 

Requirements

Roles Model
It identifies the key
roles in the system,
where a role can be

viewed as an abstract
description of an entity

function

Interactions Model
It represents the

dependencies between
roles. There is a set of
protocol definitions,
one for each type of

role interaction

Agent Model
It documents the

various agent types
that will be used in the
system, and the agent

instances that will
realice these agent-

types at runtime

Services Model
It identifies the

services associated
with each agent role,

and specifies the main
properties of these

services. A service is
an agent function

Acquaintance Model
It defines the

communication links
that exist between

agent types. It do not
define what messages

are sent/received

A
N
A
L
Y
S
I
S

D
E
S
I
G
N

Abstract concepts
Roles

Permissions
Responsibilities

Protocols
Activities

Liveness properties
Safety properties

Concrete concepts
Agent Types

Services
Acquaintances

Abstract notions are those used during analysis to conceptualize the system, but they do not necessarily have
any direct realization within the system. Concrete notions, in contrast, are used within the design process, and
will tipically have direct counterparts in the runtime system

Requirements

Roles Model
It identifies the key
roles in the system,
where a role can be

viewed as an abstract
description of an entity

function

Interactions Model
It represents the

dependencies between
roles. There is a set of
protocol definitions,
one for each type of

role interaction

Agent Model
It documents the

various agent types
that will be used in the
system, and the agent

instances that will
realize these agent-

types at runtime

Services Model
It identifies the

services associated
with each agent role,

and specifies the main
properties of these

services. A service is
an agent function

Acquaintance Model
It defines the

communication links
that exist between

agent types. It does not
define what messages

are sent/received

A
N
A
L
Y
S
I
S

D
E
S
I
G
N

Figure 1. Example of analysis and design models in the Gaia methodology [Wooldridge00] 
 

 



3. Framework Design using Proto-
Frameworks 
 
Object-oriented frameworks represent, perhaps, the 
current most successful technology to achieve both 
design and code reuse [Fayad97]. The benefits of a 
framework [Johnson97, Fayad99] are that it 
provides a general and reusable skeleton of classes 
and behavior patterns for a given domain, and 
relying on this support new application can be 
developed in a flexible and direct way, with 
additional savings of time and design effort. 
However, there is a growing feeling in the software 
community that this technology is not enough to 
cope with the problem of building highly reusable 
and adaptable software systems.  On one hand, all 
these benefits need to be enforced during framework 
design.  On the other hand, the influence of quality 
factors such as flexibility, extensibility, or 
interoperability, imposes additional conditions to the 
process. These properties are more inherent to the 
software itself than to the application domain.  
Therefore, alternative methods to overcome these 
problems are becoming more and more important 
and necessary. Our approach to framework 
development can be seen not as new method, but as 
a bridge between architectural styles and object 
orientation. The problem relies on how to break the 
tradeoff imposed by a pure functional 
decomposition versus a pure object-oriented 
decomposition of a problem. In our opinion, the 
notion of architectural materialization is a key 
aspect that can lead to the development of better 
frameworks, but also powerful proto-frameworks. 
These ideas are further explained in subsequent 
sections. 
 
 
Architectural materialization 
 
Architectural styles can be used to derive a domain-
specific software architecture, that is a software 
architecture that fits the requirements of a given 
domain prescribing a generic solution for such 
domain. An architecture derived from architectural 
styles, however, does not always prescribe an 
object-oriented computational solution. According 
to [Shaw96], object orientation is considered as a 
particular architectural style. The style only 
indicates the usage of objects as architectural 
components and messages as connectors. 
Nonetheless this view, does not recognize the fact 
that object orientation can be a very convenient 
technology to implement, or materialize, different 
architectural styles.  
 

By materialization we mean the process of 
producing a concrete computational representation 
from an abstract description using a given 
technology. Taking into account this aspect, the 
proposed approach is based on the notion of object-
oriented materialization of domain-specific 
architectures derived from domain models.  Our 
view differs from other approaches to object-
oriented architecture design using patterns like 
[Buschmann96], in that these approaches intend to 
provide an object-oriented description of the 
architectural models, which not always can be 
directly mapped to a particular situation.  
 
Our approach to framework development is depicted 
in Figure 2. Starting from an abstract domain model 
and one or more architectural styles (e.g. pipeline, 
blackboard, hierarchical layers, etc.) adequate for 

the domain, we can obtain a first architectural 
materialization of the domain. This materialization 
is driven, essentially, by non-functional 
requirements that predominate in that domain.  
 
The right formalization of this architecture can bring 
the possibility of early verification of essential 
properties that the architecture is supposed to 
satisfy. After that, the process should continue by 
refining and translating that organization to an 
object-oriented world. In such activity, design 
patterns may be applied to obtain a flexible design 
that is appropriate for a framework. Simultaneously, 
specific methods must be defined for representing 
the application domain control flow. In such 
process, some points that can not be generalized 
must be traduced in abstract and hooks methods.  
 

Domain Model Architectural
Styles

Architectural
Materialization

Domain Specific
Architecture

O-O Materialization

Framework

O-O Design
Patterns

 
 

Figure 2. Materialization approach to framework 
design 



The process of refinement of an architectural model 
to produce a first architectural design of the 
application can be obtained through one of the 
following ways: 

• Direct Mapping: Application requirements 
match the constraints prescribed by the 
pattern, so architecture components can be 
directly derived from the model.  

• Constraint Relaxation: Some constraints 
can be relaxed due to specific 
characteristics of the application that do not 
require the complete functionality 
prescribed by the pattern. In this case, 
several components can be combined in a 
single component. 

• Constraint Strengthening: In some cases, 
one or more non-functional requirements 
are more important or crucial than others. 
Depending on the type of requirement, the 
resulting mapping varies. In case of 
adaptability, for example, a given 
component predicted by the model can be 
split in several components. In case of 
efficiency, the predicted functionality of a 
component can be relaxed to behave more 
efficiently. 

 
 

Functionality Attribution and Proto-
Frameworks 
 
Normally, the choice of architectural styles gives a 
set of abstract components and patterns of 
communication among them. But, depending on the 
styles, the specific number of components and their 
function will obviously vary according to the 
functionality implemented by the framework.  In 
this process, also the interface of each resulting 
component is defined, as well as the data flow 
among the components. 
 
This functionality attribution, however, can lead to 
different frameworks according to the design goals 
and, particularly, the specific target domain. That is, 
if we are designing a framework for Enterprise 
Quality Management Systems (EQM) probably one 
or more components will be in charge of managing 
structured documents, for example. A class 
hierarchy, implementing the different types of 
documents and the functions applicable to them will 
probably materialize these documents. 
 
On the other hand, when the target domain is a 
paradigm of software organization, as MAS for 
example, the materialization of the architecture can 
produce an object-oriented framework 
implementing the mechanisms needed to support the 

concepts of the paradigm. In this case, there are two 
alternatives:  

• Service-oriented frameworks: The 
designers can decide to materialize a 
framework oriented to provide specific 
functional services for the domain, which 
can be used by specific applications in a 
mostly black-box fashion, as is the case of 
Madkit [Gutknecht97], for example. 

• Proto-frameworks: The designers can 
decide to materialize a framework 
implementing the essential abstractions of 
the domain, providing all the infrastructure 
needed for cooperation and communication 
of each component type. In this case, the 
framework provides very abstract hooks to 
map specific domain components into a 
class hierarchy in a white-box fashion. This 
mapping can produce a specific 
application, but more important yet, it can 
produce new domain-specific frameworks 
that adopt the underlying architectural 
model. In other words, a proto-framework 
represents an object-oriented 
materialization of a software architecture 
derived from non-object-oriented 
architectural styles. 

 
There is subtle difference between both alternatives. 
In the first case, the framework does not necessarily 
provide structured guidance to build, or derive, 
specific applications or even frameworks for the 
target domain. In the second case, a proto-
framework provides essential abstractions to derive 
new applications or frameworks by inheritance from 
the proto-framework classes.  This aspect represents 
an important advantage because the designer has to 
concentrate on how to map specific entities to the 
proto-framework abstract entities which provide the 
essential architectural behavior and how to 
implement the specific functionality of this 
framework. 
 
The next section presents the main characteristics of 
Bubble, an object-oriented proto-framework that 
showed the feasibility of the approach. 
 
 
 
4. The Proto-Framework Bubble 
 
Bubble is a framework implemented in Java 
[DiazPace00], originally conceived and designed to 
build multi-agent systems for the simulation 
domain. The current design of Bubble is the result of 
several design iterations, essentially due to strong 
flexibility limitations imposed by the initial fully 



object-oriented approach used for its design.  After 
realizing the problem, we shift our attention to a 
pure architectural view of the problem, and we 
chose an implicit invocation style as the main design 
driver for the architecture, and to model domain 
entities (agents) separating state from actions using 
the notion of tasks. The interaction among these 
agents, that we call bubbles, is performed through 
events that they produce and receive. Bubble agents 
are equipped with associated sensors (like filters) 
that are registered to listen to certain kinds of events 
with a defined criterion of relevance (local, by 
group, by event strength, regional, etc.).  
 
The behavior of any bubble agent is defined through 
tasks using a condition-action style, i.e. a task is a 
module composed by a series of actions to be 
executed by the agent (action part) when certain 
conditions are fulfilled (condition part). Conditions 
can be related either to the internal state of the agent 
or the incoming events. The framework also admits 
bubble agents containing groups of other agents, and 
tasks composed by groups of predefined tasks. In 
this way, complex interactions, structures and 
behaviors can be modeled combining primary 
blocks.  
 
Figure 3 shows a diagram of the underlying 
framework architectural model, illustrating a typical 
event flow between bubble agents in a container and 
the role that sensors play in this process.  Note that 
the outgoing events produced by an agent D are 
propagated only if the agent is attached to a 
container, but this relationship is not compulsory.  
When a agent receives an incoming event (the 
agents B, C and container, in the example), the 
processing depends on the current tasks associated 
with the agent. 

 
Architectural Views 
 
The Bubble architecture can be described from three 
different views: structural organization, 
communications, and agent tasks.   The next 
subsections briefly describe each of these views. 

• Structural organization: Bubble was 
designed pursuing the goal of having 
uniform decomposition. By uniform 
decomposition [Bass98] we mean the 
operation of separating a large component 
into two or more smaller ones, limiting the 
composition mechanisms to a restricted 
uniform set.  Thus, integration of 
components and scaling of the system as a 
whole is achieved having besides 
modifiability and reusability properties. 
The aim is to represent the agent 
organization with a hierarchy of abstraction 
levels: bubble agents composed by other 
agents, which in turn are composed by 
others, and so on. The same structure is 
used to handle incoming and outgoing 
events (see next section about 
communications).  

• Communication: Communications among 
different components in Bubble are 
performed through events. Every agent can 
be linked to a container agent, and this 
container is engaged to collect and dispatch 
incoming events to the sensors registered 
inside it.  As we explained in a previous 
section, sensors act like filters and transmit 
only interesting events to their associated 
agents. An implicit-invocation mechanism 
[Shaw96] is used to achieve these 
notifications. The container agent is in 
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Figure 3.  Conceptual model of Bubble´s architecture 



charge of the event flow management 
among all the agents. An event represents a 
notification of any change occurring in the 
system. Sensors are responsible for 
reception and conditional transmission 
(filtering) of events. Container agents 
deliver events received from the bubble 
agents to the sensors. To illustrate this 
interaction, let’s suppose we are modeling 
a market where buyers and sellers are free 
to perform transactions, any customer 
interested in buying certain items needs to 
specify a purchasing criterion and enroll 
itself with the market to listen to bids. In 
this context, the market can be a container 
agent, both sellers and buyers are simple 
agents, and the specific purchasing 
criterion corresponds with a sensor. Every 
time a new offer appears, our customer will 
be notified about that situation only if the 
offer fulfills its purchasing conditions. 

• Behavior: All the agents of the framework 
can perform a set of tasks. A task is 
composed by one or more procedures with 
a set of input and output parameters. Tasks 
are triggered by predefined conditions, 
which can be related to the internal state of 
the agents or incoming events. In this way, 
the agent behavior is conceived as a set of 
competing tasks, where only one task is 
active at the same time [Drogoul92]. When 
a selected task is executed, it can generate 
either outgoing events and/or changes 

affecting the agent state. Figure 4 provides 
a picture of such situation. Different tasks 
can be dynamically assigned to a agent, 
and they compete to execute according to 
their priorities and activation requirements. 

 
 
Object-Oriented Materialization of the 
Architecture 
 
The process of materializing the architecture of 
Bubble on an object structure was accomplished in a 
stepped way, firstly we produced a preliminary 
design for the architecture and then we refined it 
including several design patterns [Gamma94] in 
order to provide more flexibility to the framework.  
 
The initial design comprised the classes mapping 
the main components of Bubble, namely: bubble 
agents, tasks, sensors and events. The different types 
of entities defined in the architecture (agents, 
composed agents and container agents) appeared in 
the framework as subclass relationships, 
representing the extension in capabilities (behavior) 
present in such entities. In this way, a bubble agent 
models the basic entities of the framework (class 
Agent), a composed agent models a group of entities 
(class ComposedAgent), and a container agent, in 
turn, represents a set of entities and sensors working 
together within a container agent (class 
ContainerAgent). Sensors were directly 
implemented as wrapper objects (class Sensor), and 
their filtering criterion was coded as an abstract 
method. Finally, tasks were defined as separated 
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objects that can be attached with different entities 
(class Task). Again, both the task body and the 
conditions to activate it were specified as abstract 
methods.  To execute their tasks, bubble agents have 
a general implementation of the competing-tasks 
algorithm using template methods. However, 
developers are not constrained to this particular 
style of execution, and they can define other 
execution mechanisms according to specific needs. 
Event and implicit invocation features were spread 
out through agents and sensors. Any common agent 
defines entry and exit methods for events, whereas 
container agents implement mechanisms for event 
registry and dispatching.  
 
Following the design approach, once we outlined a 
first abstraction of the Bubble framework, we 
proceeded to improve it with a more detailed design. 
This step involved, for instance, the splitting of 

behavior in some classes, class refactorizations, and 
the application of several design patterns.  
Essentially, the purpose of all these activities was to 
offer more possibilities of reuse and flexibility at 
framework level. The following reports on some of 
the refinements. 
 
Bubble agents were restructured to permit a better 
separation between behavior interfaces and 
implementation of these behaviors.  Basically, we 
used Java interfaces to define the abstract behavior 
of the agents (interfaces AbstractAgent and 
AbstractComposedAgent), and also included some 
concrete implementations of these interfaces 
(classes Agent, ComposedAgent, and 
ContainerAgent) that can be used by developers as 
default components. Additionally, we added a new 
interface to handle group interactions and roles 
(interface AbstractAgentGroup). In the same way, 
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getTask()  :  Task

< < Interface>>

0..*0. .*

+owner

Sensor  {Abs t rac t }

agent  :  Abs t rac tAgent

{abst ract }  agentChanged(Object  ob j )
se tAgent (Abs t rac tAgent )
updateAgentEvent(AgentEvent)
processAgentEvent (AgentEvent )
{abstract }  isAgentEventFi l tered(AgentEvent)  :  boolean

0..*0. .*

+updater

AgentEvent

category  :  in t
type :  in t
source  :  Abs t rac tAgen t
message  :  S t r i ng
arguments  :  Vec to r
t imeStamp :  l ong

setArgument ( in t ,  Ob jec t )
getArgument( in t )  :  Object
getT imeStamp()  :  long
setT imeStamp( long)
getMessage()  :  S t r ing
se tMessage(St r ing)
ge tSource( )  :  Abs t rac tAgent

Agent  {abst ract }

incomingEvents  :  Vec tor
manager  :  AgentEventHandler
sensors  :  Vec to r
tasks  :  Hash tab le
enabled :  boolean

init ial ize()
addSensor(Sensor)
removeSensor(Sensor)
not i fySensors(Object )
sendAgentEvent (AgentEvent )
updateAgentEvent(AgentEvent)
setManager(AgentEventHandler )
runTask(Str ing)
runTasks()
se lec tTasks( )  :  Enumera t ion
addAgentEvent(AgentEvent)
{abstract}  run()

0. .1

+wrapper

0. .1

0..*0. .*

 
Figure 5. Bubble Class Diagram 



we split a task into an interface and a concrete 
implementation (interface AbstractTask and class 
Task). Regarding events, we moved this 
functionality to interfaces (interfaces 
AgentEventSender, AgentEventListener, and 
AgentEventHandler), in order to decouple event 
handling from the entities (agents) manipulating 
them. 
 
All the agents supported by the framework were 
structured using a Composite pattern, this provides a 
uniform treatment of these entities favoring the 
adding/replacement of agents into the system. For 
example, we can initially have a container with 
simple agents inside, and then replace certain agents 
by other composed agents with a low influence on 
the overall design. We discovered that, sometimes, 
as agents change their respective sensors need to be 
updated to reflect these changes. Thus, we 
introduced an Observer pattern between agents and 
sensors to synchronize changes. 
 
As we mentioned above, the execution of tasks in a 
given agents follows a competing-tasks scheme. 
This aspect was modeled using a Strategy pattern, 
so that tasks implement specific behaviors that can 
be dynamically associated with agents.  Regarding 
tasks themselves, its internal structure follows a 
Template Method pattern to specify the required 
steps of processing a task should involves. Finally, 
the management of events in the framework acts 
like a Mediator pattern, this makes easier to define 
complex interaction protocols between agents and 
confers enough flexibility to update them. 
 
On the whole, we can say that all these points of 
variability improved significantly the framework 
design while preserving the original architectural 
model. To illustrate these concepts, the following 
section briefly describes a multi-agent framework 
development based on the Bubble infrastructure  
 
 
 
5. Case-Study: A Multi-Agent 
Framework for Enterprise Quality 
Systems 
 
InQuality is a framework for Enterprise Quality 
Management systems (EQM) derived from the 
proto-framework Bubble, developed by Analyte Lab 
Information Technology. Essentially, InQuality is a 
framework for building structured document-based 
applications which is intended to support different 
types of control quality applications from, for 
example, ISO9000 compliance document 
management systems up to Laboratory Information 

Management Systems (LIMS).  
 
Analyzing the different variants of the domain and 
having into account the dynamic configurability and 
flexibility requirements, we concluded that the 
Bubble architecture could fit very well these 
requirements and, simultaneously, serve as a guide 
for the development team to map the required 
functionality into computational components. 
Following this idea a first version of the framework 
was designed in a surprisingly short period.  
 
The design process mainly involved two phases: 

• Mapping of the functional specification to 
Bubble components. This phase involved 
the decision of what components would be 
mapped to agents, associated tasks and 
event types.  

• Materialization of functional components 
through the design of the subclasses that 
implement the specific functionality of the 
EQM domain. 

 
After the first iteration the design was evaluated, 
trying to identify potential bottlenecks and 
architecture tradeoffs regarding security and 
efficiency. The final architecture is depicted in 
Figure 6. Shaded components correspond to Bubble 
instantiations, whereas non-shaded ones, excepting 
the blackboard, correspond to normal object models 
that mainly provide static specifications for the rest 
of the components. Some components, like the 
blackboard, were incorporated to satisfy certain 
domain specifications. This aspect shows how the 
Bubble-based architecture can be complemented 
with another architectural style, without loosing the 
advantages of having an architectural guidance for 
the rest of the framework design. 
 
Basically, InQuality is composed of the following 
components: 
 

• Message Server: The message sever 
implements a blackboard, accepting 
messages from both external and internal 
agents. External agents are agents which 
may reside outside the application server 
space, and may be connected via HTTP, to 
the server. This can be browsers, 
Instrument Interface Agents and External 
Application Agents. Taking into account 
that many messages are addressed to 
specific users, the blackboard is able to 
maintain a persistent version of messages 
until the involved users log into the system. 
This capability is especially important for 
the workflow component. 



• Role Manager: Every user of an InQuality 
system is represented by a Bubble agent. 
Tasks associated with these agents 
determine the allowed behavior for the user 
depending on his/her role. These 
capabilities are represented by a role 
model, which defines the different rights of 
every type of user.  Roles are also 
represented by agents able to dynamically 
activate allowed tasks to every new logged 
user. This is uniformly done by subscribing 
to events that may be of their interest and 
acting according to certain rules that 
determine the activation of a given task. 
These can be security rules, such as 
allowing a particular user to edit some 
sample information if the sample belongs 
to certain area of the plant or is in a certain 
state. It uses the Security Model to access 
the rules and actions allowed for a 
particular Role and Participant. 

 
• Page Builder: This agent is responsible for 

converting documents, frames and 
interface objects to a representation 
acceptable for a given browser (such as 
HTML or XML+XSL). It isolates the 
Application Interface Model from the 
details required to convert to the different 
HTM dialects. 

 
• Event Notifier: Participants and Roles, 

and other agents can decide that they are 
interested in certain messages (events) and 
want to be notified if (and only if) certain 
(user-defined) rule is met. These rules are 

expressed in a scripting language and 
evaluated by the Notification component, 
which then notifies the interested agent. So, 
we can say that this component acts as an 
event filter.   

 
• Clock and Scheduler: It is usual for 

documents, tests, samples and activities to 
have time limits imposed on them. For 
example, if a particular sample has not 
been collected before an hour of its 
specified collection time, it will not be 
collected at all. A certain workflow 
activity, such as approving an ISO 9000 
document for distribution, may have a 
given deadline. Agents will register this 
deadline with the Clock component, and 
will ask this component to send them a 
particular event when the time arrives. 

 
• WorkFlow Manager: Almost every 

enterprise framework heavily relies on a 
workflow management system [Fayad00], 
and also this is the case of InQuality. 
Different documents, samples, test types, 
etc., may require different collection, 
processing, revision and approval cycles. 
This means they will have different 
associated workflows. This component is 
responsible for initiating, tracking and 
ending each of this workflow instances, 
also notifying roles and participants when 
they should perform a certain activity. This 
component represents an interesting 
application of Bubble's facilities, and it will 
be described in detail in the next section. 

Message Server
(persistent and non persistent messages)

Web Server
Servlet

User Interface Agent
(browser)

Role Manager

Page Builder

Security Model Application Interface Model

Specif ic Domain Model
(LIMS, EQM...)

RDBMS Doc DB (XDB) File store ...

Document  Model
Workf low
Manager

Message flow
Object method invocation

Network

 

Figure 6. Architectural Scheme of InQuality 



 
• The Roles & Security Model: This is an 

object model which acts as a repository 
used by the Role manager and the system 
configuration tools to define and get/set 
security attributes on the user interface and 
specific domain objects. Generally 
speaking, each application document and 
attribute may have security rules imposed 
for each role or user.   

 
• The Application Interface Model: This 

object model acts as a repository for all 
user interface information associated to a 
particular application, such as menus, 
frames, topic frames, button frames, etc. 
The Page Builder component uses this 
information to translate entities in this 
model to a browser dependent 
implementation. Generally speaking, it 
defines a particular application and the way 
it modifies objects in the specific domain 
model. 

 
• The Specific Domain Model: This is the 

"real" object model, associated to a 
particular domain, such as the Lab 
Information System (LIMS), or the 
Entreprise Quality Management System 
(EQM).  The objects modeled here are in 
fact "passive" wrappers for the database 
objects. Certain "business rules" and "state 
change" rules may also be included here. 
We refer to the objects belonging to this 
component as passive, because an 

associated Bubble agent manages the 
object's entire autonomous behavior (see 
Figure 7). In this way, a better separation 
of concerns is achieved leaving for the 
agent the dynamic control of the object 
behavior through Bubble tasks 1. 

 
 

The Workflow and Role Manager Components  
 
In this section we describe in more detail the design 
of the workflow component of InQuality. This 
component is an example of how the mapping to the 
Bubble architecture simplified the implementation 
of a complex component for workflow management 
and how it relates to the role manager.   
 
Usually, a workflow represents a graph constituted 
by a set of activities (nodes) and paths (arcs) 
connecting these activities, related to the specific 
tasks to be developed in a work process over a 
product. In many cases, workflow activities are 
modeled using some variants of Petri-nets, and they 
are enacted by a workflow engine. Under this 
approach, this engine becomes, almost unavoidably, 
in one of the main functional components of an 
enterprise framework. InQuality, however, uses a 
different approach. 
 
                                                        
1 Details of this core component can not be 
described in detail due to academic-industrial 
confidentiality agreements. 
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Figure 7.  InQuality mapping of domain objects and agents 



In the InQuality case each document type has an 
associated workflow. Each workflow is produced 
through a Petri-net-based graphical notation using a 
graphical editor. The editor produces an 
specification of the net that will be used to configure 
the specific workflow instance. But, instead of 
having a centralized workflow engine, every 
particular workflow instance (or workflow process) 
associated with a document is represented as a 
container agent. Each activity within the workflow 
instance is represented as a single agent (see Figure 
8).  
 
The workflow instance agent encapsulates the 
knowledge related to the structure of the particular 
workflow and to create the corresponding agents 
and associated tasks that will implement the 
workflow. Activity agents listen to events generated 
by the execution of previous activities and reacts 
when these events arrive. Tasks associated with 
activity nodes of the workflow will produce 
messages directed, through the blackboard 
component, to the specific role or participant agent 
in charge of executing such activity.   
 
When the "end of activity" event arrives, the 
corresponding activity agent evaluates each of the 
rules associated with each path originated from it, 
and generates the corresponding events that enable 
the next activities in the workflow. There are two 
workflow-specific cases of activity agents, AND 
activities and OR activities, which are used to 
coordinate the workflow process. 
 

An AND activity agent waits until all the events 
coming from its upstream nodes have arrived (that 
is, the events sent by tasks T1 and T2) and then 
announces its own event to activate the next task 
(T3). In this way it acts as a synchronization node, 
not allowing task T3 to start until both tasks T1 and 
T2 are completed. The OR agent announces its 
event if any of its registered event has arrived, and 
ignores all other incoming events. So, if either task 
T1 or task T2 is completed, then task T3 will be 
started. By ignoring all other events after the first 
one, it can assure the next task (T3) is not started 
twice. These situations are shown in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This scheme greatly simplifies the implementation 
of the workflow management component by 
mapping it to the simple conceptual model of agents 
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(Activity Agents)

Changes

Manager
User

Technician
User

Pending Activities

 

Figure 8. Relationship among Workflow Activities, Roles and Participants and Documents 
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and tasks. The dynamic nature of the task scheme 
makes easy to configure a Participant agent with the 
tasks that implement the activities it must execute. 
The Application Interface component is in charge of 
customizing the user interface of each specific 
participant to show the activities it is expected to 
accomplish, by simply asking the Participant Agent 
about its current tasks.  
 
This organization is also used to control the access 
to system function for each user according to its 
role. In this way, a given user can only see 
authorized functions, which are mapped from the 
interface to the task that implement the selected 
function. For example, some type of user can only 
edit some parts of a document or other can only 
consult a document.  
 
 
 
6. Lessons Learned 
 
From the development of InQuality, we collected 
several experiences that are currently driving the 
development of new versions of the framework. One 
of the lesson learned was that, besides the fact that 
framework design is a difficult task, the design of a 
complex enterprise framework requires more than 
domain expertise. This kind of frameworks can be 
so complex that they require the capacity of 
combining many computational factors that 
transcend the domain itself. In this sense, to have a 
clear architectural guidance, as the one provided by 
the Bubble architecture, became a stronger key than 
to have an elegant but complex framework from 
which start the development.  
 
The transition to object-oriented development, as 
several renowned authors have highlighted, requires 
more than just to know about object-oriented 
programming and design concepts [Goldberg95, 
Fayad98]. The provision of technology-independent 
architectural guidance to organize the development 
is almost indispensable.  This last fact impacts 
positively in providing a smooth technology 
transition for a relatively inexperienced 
development team. In this case, the proto-
framework concept represents an additional help to 
facilitate the reuse of object-oriented architectural 
materialization. 
 
As regards the framework, there are good reasons to 
state the appropriateness of Bubble to assist multi-
agent development. This can be traced from the 
intrinsic characteristics of MAS . As it is argued by 
[Jennings99], it is natural to modularize complex 
systems in terms of a number of related sub-systems 
organized in a hierarchical fashion, where the 

components of each sub-system work together to 
deliver a given functionality.  As these systems get 
more complex, it is usually impossible to know 
about all the potential links in advance. The 
unpredictable nature of the relationships between 
components makes it difficult to deal with these 
kind of systems using just conventional object-
oriented design techniques. In such cases, the policy 
of deferring to runtime decisions about component 
interactions provides a more realistic view. The 
power of agent organizations comes from the ability 
of agents to join groups, and by doing so, to acquire 
new abilities that they would have not obtained 
otherwise [Gutknecht97] All the aforementioned 
concepts are somehow reflected in the design of 
Bubble. Moreover, the framework also extends this 
uncoupling to behavioral issues in the form of tasks. 
In this way, problems associated with the coupling 
of components are reduced and adaptability is 
improved.  Furthermore, it promotes delegation 
models, that is a component (agent) can generate 
requests for assistance to other components if it is 
asked to carry out some specific task it cannot solve 
by its own means. 
 
 
 
7. Conclusions 
 
In this paper, we have reported on our experience 
with the design of frameworks, and particularly the 
development of multi-agent frameworks.  In this 
context, we introduced a new approach based on the 
notions of architectural materialization and proto-
frameworks.  We believe that the benefits of the 
approach are twofold. On one hand, it provides a 
smoother transition between architectural styles and 
application frameworks by inserting an intermediate 
stage of architectural materialization. On the other 
hand, and perhaps more significantly, the notion of 
proto-frameworks rises a new challenge regarding 
multi-agent development.  
 
A proto-framework makes explicit certain essential 
architectural choices by means of object-oriented 
constructs, which can serve as basis for the 
development of traditional frameworks. Moreover, 
the tradeoffs between non-functional requirements 
selected by the framework developers can determine 
different alternatives of building frameworks on top 
of proto-frameworks, and these alternatives can be 
evaluated using the techniques inherited from the 
architecture-driven design approach. 
 
We have also presented an example of a proto-
framework, named Bubble, which relies mainly on 
an architecture composed by modular entities, 
associated tasks and events.  According to the 



proposed approach, the initial conceptual 
architecture was mapped to an object-oriented 
framework and empowered to fulfill reusability and 
adaptability requirements. The resulting framework 
(i.e., the proto-framework) retains the benefits of the 
original architectural model.  The implementation of 
an EQM framework on top of Bubble illustrates how 
new application frameworks can be derived from 
proto-frameworks, and also provided a valuable 
experience about industrial application of our 
architectural materialization approach. Another 
important aspect of the work was that the 
architectural guidance provided by Bubble much 
helped a team of developers with few or no 
experience in object-oriented design to produce an 
enterprise multi-agent framework that can be 
adapted to a broad range of applications. 
 
Finally, this work hopes to contribute to the still 
incipient field of agent methodologies and design of 
MAS. We think that the ideas and results presented 
are worth to be deeply explored in order to obtain 
quantitative evidence of the benefits of combining 
object-oriented techniques and multi-agent systems. 
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